\qquad
\qquad

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2019

(Regular/Supplementary/Improvement) (CUCSS-PG)
CC17P MT3 C12/CC18P MT3 C12 - MULTIVARIABLE CALCULUS AND GEOMETRY (Mathematics)
(2017 Admission onwards)
Time: Three Hours
Maximum: 36 Weightage

PART A

Answer all questions. Each question carries 1 weightage.

1. Let $\mathrm{A} \in L\left(R^{n}, R^{m}\right)$.Then prove that A is a uniformly continuous mapping of R^{n} to R^{m}
2. Let $A: R^{2} \rightarrow R^{2}$ be defined by $A(x, y)=(3 x+2 y, 4 x-7 y)$. Find the derivative of A at any point (x, y)
3. Let $f: R^{2} \rightarrow R^{3}$ be given by $f(x, y, z)=x^{2}+y^{2}+z^{2}$. Find the directional derivative of f at $(1,0,1)$ in the direction of the vector $\left(\frac{3}{5}, 0, \frac{4}{5}\right)$
4. Give examples of contractions on $(0,1)$ having
a) no fixed point
b) unique fixed point
5. State the implicit function theorem.
6. Is $\gamma(t)=\left(t^{2}, t^{4}\right)$ a parametrization of the parabola $y=x^{2}$? Justify your answer.
7. Show that the curve $\gamma(t)=\left(\frac{4}{5} \cos t, 1-\sin t,-\frac{3}{5} \cos t\right)$ has unit speed.
8. Define a regular curve. Is the curve $\gamma(t)=\left(e^{k t} \cos t, e^{k t} \sin t\right)$ regular?
9. Compute the curvature of the curve $\gamma(t)=(t, \cosh t)$
10. Define a smooth surface in R^{3}. Prove that the unit sphere in R^{3} given by $S^{2}=\left\{(x, y, z) / x^{2}+y^{2}+z^{2}=1\right\}$ is a smooth surface.
11. Calculate the first fundamental form of the surface whose surface patch is given by $\sigma(u, v)=(\sinh u \sinh v, \sinh u \cosh v, \sinh u)$
12. Prove that for a plane, the unit normal is constant.
13. Define Gauss map.
14. If the Principal curvatures of a surface are 2 and 3 respectively, then find its Mean curvature and Gaussian curvature.
$(14 \times 1=14$ Weightage $)$

PART B

Answer any seven questions. Each question carries 2 weightage.
15. Prove that a linear operator A on a finite dimensional space is one to one if and only if the range of A is all of X .
16. Prove that $L\left(R^{n}, R^{m}\right)$ is a metric space.
17. Let A be a function from an open set $E \subset R^{n}$ to R^{m}. Prove that the derivative of A if it exists, is unique.
18. Let X be a complete metric space and Φ be a contraction from X into X. Then prove that Φ has a unique fixed point in X
19. Let γ be a unit-speed curve in R^{3} with constant curvature and zero torsion. Then prove that, γ is a parametrization of (part of) a circle.
20. Prove that if γ is a regular closed curve then a unit speed reparametrization of γ is also closed.
21. If $f: S \rightarrow \tilde{S}$ is a smooth map between surfaces and $\mathrm{p} \in S$, then prove that the derivative Map $D_{p} f: T_{P} S \rightarrow T_{P} \tilde{S}$ is a linear map.
22. Compute the second fundamental form of the surface $\sigma(u, v)=\left(u, v, u^{2}+v^{2}\right)$
23. Prove that the Weingarten map is self adjoint.
24. Let S be a connected surface of which every point is an umbilic. Then, prove that S is an open subset of a plane or a sphere.

$$
(7 \times 2=14 \text { Weightage })
$$

PART C

Answer any two questions. Each question carries 4 weightage.
25. a) Suppose f maps an open set $E \subset R^{n}$ into R^{m}, and f is differentiable at a point $x \in E$. Then prove that the partial derivatives $D_{j} f_{i}(x)(1 \leq j \leq n, 1 \leq i \leq m)$ exist at all points of E
b) If $f(0,0)=0$ and $f(x, y)=\frac{x y}{x^{2}+y^{2}}$ if $(x, y) \neq(0,0)$, then prove that the function f is not differentiable in R^{2} even though all the partial derivatives of f exist at all point of R^{2}
26. State and prove the Inverse function theorem.
27. Prove that a parametrized curve has a unit speed reparametrization if and only if it is regular.
28. Let $\sigma: U \rightarrow R^{3}$ be a surface patch. Let $\left(u_{0}, v_{0}\right) \in U$, and let $\delta>0$ be such that the closed disc $R_{\delta}=\left\{(u, v) \in R^{2} /\left(u-u_{0}\right)^{2}+\left(v-v_{0}\right)^{2} \leq \delta^{2}\right\}$ with centre $\left(u_{0}, v_{0}\right)$ and radius δ is contained in U . Then prove that $\lim _{\delta \rightarrow 0} \frac{\mathcal{A}_{N}\left(R_{\delta}\right)}{\mathcal{A}_{\sigma\left(R_{\delta}\right)}}=|K|$, where K is the Gaussian curvature of σ at $(0,0)$
$(2 \times 4=8$ Weightage $)$

