(Pages: 2)

Name	•
Reg. No	•

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2019

(Regular/Supplementary/Improvement)

(CUCSS-PG)

CC17P MT3 C12/CC18P MT3 C12 - MULTIVARIABLE CALCULUS AND GEOMETRY

(Mathematics)

(2017 Admission onwards)

Time: Three Hours

Maximum: 36 Weightage

PART A

Answer *all* questions. Each question carries 1 weightage.

- 1. Let $A \in L(\mathbb{R}^n, \mathbb{R}^m)$. Then prove that A is a uniformly continuous mapping of \mathbb{R}^n to \mathbb{R}^m
- 2. Let $A : \mathbb{R}^2 \to \mathbb{R}^2$ be defined by A(x, y) = (3x + 2y, 4x 7y). Find the derivative of A at any point (x, y)
- 3. Let $f: \mathbb{R}^2 \to \mathbb{R}^3$ be given by $f(x, y, z) = x^2 + y^2 + z^2$. Find the directional derivative of f at (1,0,1) in the direction of the vector $\left(\frac{3}{5}, 0, \frac{4}{5}\right)$
- 4. Give examples of contractions on (0,1) havinga) no fixed pointb) unique fixed point
- 5. State the implicit function theorem.
- 6. Is $\gamma(t) = (t^2, t^4)$ a parametrization of the parabola $y = x^2$? Justify your answer.
- 7. Show that the curve $\gamma(t) = \left(\frac{4}{5}cost, 1 sint, -\frac{3}{5}cost\right)$ has unit speed.
- 8. Define a regular curve. Is the curve $\gamma(t) = (e^{kt} \cos t, e^{kt} \sin t)$ regular?
- 9. Compute the curvature of the curve $\gamma(t) = (t, cosht)$
- 10. Define a smooth surface in R^3 . Prove that the unit sphere in R^3 given by $S^2 = \{(x, y, z)/x^2 + y^2 + z^2 = 1\}$ is a smooth surface.
- 11. Calculate the first fundamental form of the surface whose surface patch is given by $\sigma(u, v) = (\sinh u \sinh v, \sinh u \cosh v, \sinh u)$
- 12. Prove that for a plane, the unit normal is constant.
- 13. Define Gauss map.
- 14. If the Principal curvatures of a surface are 2 and 3 respectively, then find its Mean curvature and Gaussian curvature.

$(14 \times 1 = 14 \text{ Weightage})$

PART B

Answer any seven questions. Each question carries 2 weightage.

15. Prove that a linear operator *A* on a finite dimensional space is one to one if and only if the range of *A* is all of X.

18P305

- 16. Prove that $L(\mathbb{R}^n, \mathbb{R}^m)$ is a metric space.
- 17. Let A be a function from an open set $E \subset \mathbb{R}^n$ to \mathbb{R}^m . Prove that the derivative of A if it exists, is unique.
- 18. Let *X* be a complete metric space and Φ be a contraction from *X* into *X*. Then prove that Φ has a unique fixed point in *X*
- 19. Let γ be a unit-speed curve in R^3 with constant curvature and zero torsion. Then prove that, γ is a parametrization of (part of) a circle.
- 20. Prove that if γ is a regular closed curve then a unit speed reparametrization of γ is also closed.
- 21. If $f: S \to \tilde{S}$ is a smooth map between surfaces and $p \in S$, then prove that the derivative Map $D_p f: T_P S \to T_P \tilde{S}$ is a linear map.
- 22. Compute the second fundamental form of the surface $\sigma(u, v) = (u, v, u^2 + v^2)$
- 23. Prove that the Weingarten map is self adjoint.
- 24. Let *S* be a connected surface of which every point is an umbilic. Then, prove that *S* is an open subset of a plane or a sphere.

$(7 \times 2 = 14 Weightage)$

PART C

Answer any *two* questions. Each question carries 4 weightage.

- 25. a) Suppose f maps an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^{m} , and f is differentiable at a point $x \in E$. Then prove that the partial derivatives $D_j f_i(x)$ $(1 \le j \le n, 1 \le i \le m)$ exist at all points of E
 - b) If f(0,0) = 0 and $f(x, y) = \frac{xy}{x^2 + y^2}$ if $(x, y) \neq (0, 0)$, then prove that the function f is not differentiable in R^2 even though all the partial derivatives of f exist at all point of R^2
- 26. State and prove the Inverse function theorem.
- 27. Prove that a parametrized curve has a unit speed reparametrization if and only if it is regular.
- 28. Let $\sigma: U \to R^3$ be a surface patch. Let $(u_0, v_0) \in U$, and let $\delta > 0$ be such that the closed disc $R_{\delta} = \{(u, v) \in R^2/(u u_0)^2 + (v v_0)^2 \le \delta^2\}$ with centre (u_0, v_0) and radius δ is contained in U. Then prove that $\lim_{\delta \to 0} \frac{\mathcal{A}_N(R_{\delta})}{\mathcal{A}_{\sigma}(R_{\delta})} = |K|$, where K is the Gaussian curvature of σ at (0, 0)

 $(2 \times 4 = 8 Weightage)$