18P308

(Pages: 2)

Name	• • •
Reg No	

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2019

(Regular/Supplementary/Improvement)

(CUCSS-PG)

(Mathematics)

CC17P MT3 C15/CC18P MT3 C15 - PDE AND INTEGRAL EQUATIONS

(2017 Admission onwards)

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer *all* questions. Each question carries 1 weightage.

- 1. Give two parametric representation of a surface $x^2 + y^2 + z^2 = a^2$
- 2. Show that if there is a functional relation between two function u(x, y) and v(x, y) not involving x and y explicitly, then $\frac{\partial(u,v)}{\partial(x,y)} = 0$
- 3. Determine the region D in which the two equations $p^2 + q^2 1 = 0$ and $(p^2 + q^2)x pz = 0$ are compatible.
- 4. Find the complete integral of $z px qy p^2 q^2 = 0$
- 5. Determine the Monge cone in the case of $p^2 + q^2 = 1$ with vertex (0, 0, 0)
- 6. Write the classification of the equation: $4u_{xx} 4u_{xy} + 5u_{yy} = 0$
- 7. Prove that the solution of the Dirichlet problem if it exist is unique.
- 8. State Harnack's theorem.
- 9. Define the domain of dependence and range of influence in the case of a one dimensional wave equation.
- 10. State Riemann function.
- 11. Obtain the exact solution of $y(x) = \lambda \int_0^1 x \xi y(\xi) d\xi + 1$
- 12. If y''(x) = F(x) and y satisfies the initial conditions $y(0) = y_0$, $y'(0) = y'_0$, show that $y(x) = \int_0^x (x - \xi)F(\xi)d\xi + y'_0 x + y_0$
- 13. Explain the condition for the existence of reduntant solution of an integral equation.
- 14. Determine the resolvent kernel associated with $K(x,\xi) = x\xi$ in (0,1) in the form of power series in λ obtaining the first three terms.

(14 x 1 = 14 Weightage)

Part B

Answer any *seven* questions. Each question carries 2 weightage.

- 15. Find the general integral of the equation $(z^2 2yz y^2)p + x(y + z)q = x(y-z)$
- 16. Find the integral corresponding to $yzdx + (x^2y xz)dy + (x^2z xy)dz = 0$

- 17. Solve by Jacobi's method the equation $z^3 = pqxy$
- 18. Find the integral surface of the equation $x^3p + y(3x^2 + y)q = z(2x^2 + y)$ which passes through x = 1, y = s, z = s(1 + s)
- 19. Find the solution of $(n-1)^2 u_{xx} y^{2n}u_{yy} = ny^{2n-1}u_y$, where n is a positive integer.

20. Solve
$$y_{tt}$$
- $c^2 y_{xx} = 0, 0 < x < 1, t > 0,$
 $y(0,t) = y(l, t) = 0,$
 $y(x,0) = x(1-x), 0 \le x \le 1,$
 $Y_t(x,0) = 0, 0 \le x \le 1$

- 21. Prove that the solution u(x, t) of the differential equation $u_t ku_{xx} = F(x, t), 0 < x < l$, t > 0 satisfying the initial conditions $u(x, 0) = f(x), 0 \le x \le l$ and the boundary conditions $u(0, t) = u(l, t) = 0, t \ge 0$ is unique.
- 22. Transform the problem $\frac{d^2y}{dx^2} + y = x$, y(0) = 1, y(1) = 0 to a Fredholm integral equation.
- 23. Solve the Fredholm integral equation by iterative method: $y(x) = 1 + \lambda \int_0^1 (1 3x \xi) y(\xi) d\xi$
- 24. Determine the iterated kernel $K_2(x, \xi)$ associated with $K(x, \xi) = |x \xi|$ in (0, 1)

(7 x 2 = 14 Weightage)

Part C

Answer any two questions. Each question carries 4 weightage.

- 25. State and prove the necessary and sufficient condition that the PDE \overline{X} . $d\overline{r} = P(x, y, z)dx + Q(x, y, z)dy + R(x, y, z)dz = 0$ be integrable is that \overline{X} . Curl $\overline{X} = 0$
- 26. Using the method of characteristics, find an integral surface of pq = xy which passes through the line x = z, y = 0
- 27. Show that the solution for the Dirichlet problem for a circle of radius a is given by the Poisson integral formula.
- 28. Consider the equation $y(x) = F(x) + \lambda \int_0^{2\pi} \cos(x + \xi) y(\xi) d\xi$
 - (a) Determine the characteristic values of λ and the corresponding characteristic functions.
 - (b) When F(x) = 1, what is the solution of the above integral equation?

(2 x 4 = 8 Weightage)