| P | 20 | es | | 2 | |----|----|----|---|---| | (1 | ay | CS | , | 4 | | Name |
• • | | ** |
 | | | |-------|---------|--|----|------|--|--| | Dag N | | | | | | | ### FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, MARCH 2017 (CUCSS - PG) (Mathematics) #### CC15P MT4 E02-ALGEBRAIC NUMBER THEORY (2015 Admission) Time: Three Hours Maximum: 36 Weightage # Part A (Answer <u>all</u> Questions) Each question carries 1 weightage - 1. Express $t_1^3 + t_2^3$ in terms of elementary symmetric polynomials. - 2. Find a **Z** basis for the integers of $\mathbb{Q}(\sqrt[3]{5})$. - 3. Find a ring which is not noetherian. - 4. Is the number $\frac{1+\sqrt{17}}{2\sqrt{-19}}$ an algebraic integer. Justify your answer. - 5. Find integral basis and discriminant for the field $Q(\sqrt{2}, i)$. - 6. Let $\mathbf{K} = \mathbf{Q}(\xi)$, where $\xi = e^{2\pi i/p}$ for a rational p. In the ring of integers $\mathbf{Z}[\xi]$, show that $\alpha \in \mathbf{Z}[\xi]$ is a unit if and only if $N_K(\alpha) = \pm 1$. - 7. Let $\{\alpha_1, \alpha_2, \cdots, \alpha_n\}$ be any Q-basis of K. Then prove that $\Delta[\alpha_1, \alpha_2, \cdots, \alpha_n] = \det(T(\alpha_i, \alpha_j))$. - 8. Let $\mathbf{K} = \mathbf{Q}(\xi)$ where $\xi = e^{2\pi i/5}$. Calculate $N_K(\alpha)$ and $T_K(\alpha)$ for $\alpha = 1 + \xi + \xi^2 + \xi^3 + \xi^4$. - Let D be the ring of integers of a number field and let p be a non-zero prime ideal of D. Prove that p is a maximal ideal. - 10. Prove that every principal ideal domain is a unique factorization domain. - 11. Calculate the class number of $\mathbf{Q}(\sqrt{d}\)$ for d square free and -10 \leq d \leq 10. - 12. Sketch the lattice in \mathbb{R}^2 generated by (-1, 0) and (0, 1) and a fundamental domain for the lattice. - 13. Give Lst and σ explicitly for $\mathbf{K} = \mathbf{Q}(\sqrt[4]{5})$. - 14. Find principal ideals \mathbf{a} , \mathbf{b} in $\mathbf{Z}[\sqrt{-6}]$ such that $\mathbf{a}\langle 2, \sqrt{-6}\rangle = \mathbf{b}\langle 3, \sqrt{-6}\rangle$ # Part B (Answer <u>any seven</u> Questions) Each question carries 2 weightage - 15. Let **K** be a number field. Prove that the discriminant of any basis for **K** is rational and non-zero. - 16. Prove that every number field K possesses an integral basis. - 17. Let \mathfrak{D} be the ring of integers of a number field K. Prove that the additive group of \mathfrak{D} is a free abelian group of rank n, where n is the degree of K. - 18. Prove that the discriminant of $Q(\xi)$, where $\xi = e^{2\pi i/p}$ and p an odd prime is $(-1)^{(p-1)/2} p^{p-2}$ - 19. Prove that a complex number θ is algebraic iff the ring $\mathbf{Z}[\theta]$ is a finitely generated abelian group. - 20. Compute the prime factorization of the ideal (18) in $\mathbb{Z}[\sqrt{-17}]$. - 21. Prove that factorization of elements of $\mathfrak D$ into irreducible is unique iff every ideal of $\mathfrak D$ is principal. - 22. Prove that every ideal \mathbf{a} of $\mathbf{\mathfrak{D}}$ with $\mathbf{a} \neq 0$ has a \mathbf{Z} -basis $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ where n is the degree of \mathbf{K} . Also prove that $N(\mathbf{a}) = \left|\frac{\Delta[\alpha_1, \alpha_2, \dots, \alpha_n]}{\Delta}\right|^{1/2}$, where Δ is the discriminant of \mathbf{K} . - 23. If X is a bounded subset of \mathbb{R}^n and $\nu(X)$ exists, and if $\nu(\nu(X)) \neq \nu(X)$, then prove that ν/X is not injective. - 24. Let **K** be a number field. Prove that the only roots of unity in **K** are $\pm \xi^s$ for integers s. # Part C (Answer <u>any two</u> Questions) Each question carries 4 weightage - 25. Let **K** be a number field. Then prove that $K = Q(\theta)$ for some algebraic number θ . - 26. Let d < -11 be a square free integer. Prove that the ring of integers of $\mathbf{Q}(\sqrt{d})$ is not Euclidean. - 27. Let **D** be a domain in which factorization into irreducible is possible. Prove that factorization into irreducible is unique iff every irreducible is prime. - 28. (a) Let L be an m-dimensional lattice in \mathbb{R}^n . Then prove that \mathbb{R}^n/L is isomorphic to $\mathbb{T}^m \times \mathbb{R}^{n-m}$ - (b) If **M** is a lattice in **L**st of dimension s+2t having fundamental domain of volume V, and if c_1 , c_2 , ---, c_{s+t} are positive real numbers whose product c_1 c_2 --- $c_{s+t} > \left(\frac{4}{\pi}\right)^t V$. Prove that in M there exist a non-zero element $x = (x_1, x_2, ---, x_{s+t})$ such that $|x_1| < c_1$, $|x_2| < c_2$, ---, $|x_s| < c_s$, $|x_{s+t}|^2 < c_{s+t}$, ---, $|x_{s+t}|^2 < c_{s+t}$. *****