P	20	es		2
(1	ay	CS	,	4

Name	 • •		**	 		
Dag N						

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, MARCH 2017

(CUCSS - PG) (Mathematics)

CC15P MT4 E02-ALGEBRAIC NUMBER THEORY

(2015 Admission)

Time: Three Hours

Maximum: 36 Weightage

Part A (Answer <u>all</u> Questions) Each question carries 1 weightage

- 1. Express $t_1^3 + t_2^3$ in terms of elementary symmetric polynomials.
- 2. Find a **Z** basis for the integers of $\mathbb{Q}(\sqrt[3]{5})$.
- 3. Find a ring which is not noetherian.
- 4. Is the number $\frac{1+\sqrt{17}}{2\sqrt{-19}}$ an algebraic integer. Justify your answer.
- 5. Find integral basis and discriminant for the field $Q(\sqrt{2}, i)$.
- 6. Let $\mathbf{K} = \mathbf{Q}(\xi)$, where $\xi = e^{2\pi i/p}$ for a rational p. In the ring of integers $\mathbf{Z}[\xi]$, show that $\alpha \in \mathbf{Z}[\xi]$ is a unit if and only if $N_K(\alpha) = \pm 1$.
- 7. Let $\{\alpha_1, \alpha_2, \cdots, \alpha_n\}$ be any Q-basis of K. Then prove that $\Delta[\alpha_1, \alpha_2, \cdots, \alpha_n] = \det(T(\alpha_i, \alpha_j))$.
- 8. Let $\mathbf{K} = \mathbf{Q}(\xi)$ where $\xi = e^{2\pi i/5}$. Calculate $N_K(\alpha)$ and $T_K(\alpha)$ for $\alpha = 1 + \xi + \xi^2 + \xi^3 + \xi^4$.
- Let D be the ring of integers of a number field and let p be a non-zero prime ideal of D. Prove that p is a maximal ideal.
- 10. Prove that every principal ideal domain is a unique factorization domain.
- 11. Calculate the class number of $\mathbf{Q}(\sqrt{d}\)$ for d square free and -10 \leq d \leq 10.
- 12. Sketch the lattice in \mathbb{R}^2 generated by (-1, 0) and (0, 1) and a fundamental domain for the lattice.
- 13. Give Lst and σ explicitly for $\mathbf{K} = \mathbf{Q}(\sqrt[4]{5})$.
- 14. Find principal ideals \mathbf{a} , \mathbf{b} in $\mathbf{Z}[\sqrt{-6}]$ such that $\mathbf{a}\langle 2, \sqrt{-6}\rangle = \mathbf{b}\langle 3, \sqrt{-6}\rangle$

Part B (Answer <u>any seven</u> Questions) Each question carries 2 weightage

- 15. Let **K** be a number field. Prove that the discriminant of any basis for **K** is rational and non-zero.
- 16. Prove that every number field K possesses an integral basis.
- 17. Let \mathfrak{D} be the ring of integers of a number field K. Prove that the additive group of \mathfrak{D} is a free abelian group of rank n, where n is the degree of K.
- 18. Prove that the discriminant of $Q(\xi)$, where $\xi = e^{2\pi i/p}$ and p an odd prime is $(-1)^{(p-1)/2} p^{p-2}$
- 19. Prove that a complex number θ is algebraic iff the ring $\mathbf{Z}[\theta]$ is a finitely generated abelian group.
- 20. Compute the prime factorization of the ideal (18) in $\mathbb{Z}[\sqrt{-17}]$.
- 21. Prove that factorization of elements of $\mathfrak D$ into irreducible is unique iff every ideal of $\mathfrak D$ is principal.
- 22. Prove that every ideal \mathbf{a} of $\mathbf{\mathfrak{D}}$ with $\mathbf{a} \neq 0$ has a \mathbf{Z} -basis $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ where n is the degree of \mathbf{K} . Also prove that $N(\mathbf{a}) = \left|\frac{\Delta[\alpha_1, \alpha_2, \dots, \alpha_n]}{\Delta}\right|^{1/2}$, where Δ is the discriminant of \mathbf{K} .
- 23. If X is a bounded subset of \mathbb{R}^n and $\nu(X)$ exists, and if $\nu(\nu(X)) \neq \nu(X)$, then prove that ν/X is not injective.
- 24. Let **K** be a number field. Prove that the only roots of unity in **K** are $\pm \xi^s$ for integers s.

Part C (Answer <u>any two</u> Questions) Each question carries 4 weightage

- 25. Let **K** be a number field. Then prove that $K = Q(\theta)$ for some algebraic number θ .
- 26. Let d < -11 be a square free integer. Prove that the ring of integers of $\mathbf{Q}(\sqrt{d})$ is not Euclidean.
- 27. Let **D** be a domain in which factorization into irreducible is possible. Prove that factorization into irreducible is unique iff every irreducible is prime.
- 28. (a) Let L be an m-dimensional lattice in \mathbb{R}^n . Then prove that \mathbb{R}^n/L is isomorphic to $\mathbb{T}^m \times \mathbb{R}^{n-m}$
 - (b) If **M** is a lattice in **L**st of dimension s+2t having fundamental domain of volume V, and if c_1 , c_2 , ---, c_{s+t} are positive real numbers whose product c_1 c_2 --- $c_{s+t} > \left(\frac{4}{\pi}\right)^t V$. Prove that in M there exist a non-zero element $x = (x_1, x_2, ---, x_{s+t})$ such that $|x_1| < c_1$, $|x_2| < c_2$, ---, $|x_s| < c_s$, $|x_{s+t}|^2 < c_{s+t}$, ---, $|x_{s+t}|^2 < c_{s+t}$.
