-	-	Wh.		-	
п	-	ν	/8	68	1
	. 7		-9	ų,	-

(Pages: 2)

Name

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, MARCH 2017

(CUCSS - PG)

(Mathematics)

CC15P MT4 E05 – OPERATIONS RESEARCH

(2015 Admission)

Time: Three Hours

(Answer all Questions. Each question has weightage 1)

- 1. Define path, chain, cycle and circuit with example.
- Give an example to show that the spanning tree of minimum length need not be unique.
- Write the problem of maximum flow in the generalized form.
- Show that if $\{x_i\}$ and $\{y_i\}$ are two flows in a graph, then $\{ax_i + by_i\}$ is also a flow. Where a, b are real constants.
- 5. Define sensitivity analysis.
- 6. What you meant by parametric linear programming?
- 7. Show that K-T. Conditions fails for

Minimize
$$f = x_1^2 + x_2^2$$

subject to $g = (x_1 - 1)^3 - x_2^2 \ge 0$
 $x_1, x_2 \ge 0$

- 8. Define a quadratic programming problem.
- 9. Explain the term posynomial in Geometric Programming.
- 10. Define unimodal function of one variable.
- 11. State Bellman's Principle of optimality.
- 12. Check whether the function $\varphi_3 = f_3 f_2 + f_1$ is separable or not. Justify = 3 sols T (0.2-2.4)
- 13. Write the general problem of linear goal programming.
- 14. Write the computational steps for conjugate gradient method.

PART B

(Answer any seven Questions. Each question has weightage 2)

15. Find the maximum potential difference between v_1 and v_4 in the graph G(V,U) where

Subject to the constraints

$$\begin{array}{ll} -2 \leq f_2 - f_1 \leq 3, \;\; 6 \leq f_3 - f_2 \leq 10, \; f_4 - f_3 \leq -2, \\ -2 \leq f_2 - f_4, & 1 \leq f_4 - f_1 \leq 6, & f_3 - f_1 \leq 7 \end{array}$$

- 16. Describe the effect of deletion of the variables in the optimal solution of an LP problem.
- 17. If the Lagrangian function F(X,Y) has a saddle point (X_o,Y_o) for every $Y \ge 0$ then prove that $G(X_0) \le 0$, $Y_0'G(X_0) = 0$.
- 18. Prove that $f(X) = \overline{P}X + X'CX$ cannot have an unbounded minimum if either X'CX is positive definite or $\bar{P} = 0$.
- 19. Determine $\max (u_1^2 + u_2^2 + u_3^2)$ subject to $u_1u_2u_3 \le 6$ where u_1, u_2, u_3 are positive integers.
- 20. Describe the computational economy of Dynamic Programming.
- 21. Describe the algorithm for maximum flow problem.
- 22. Briefly describe the computational algorithm of golden section search plan.
- 23. Describe the computational steps for Method of steepest descent.

PART C

(Answer any two Questions. Each question has weightage 4)

24. Minimize
$$f(\lambda) = (1 + \lambda)x_1 + (-2 - 2\lambda)x_2 + (1 + 5\lambda)x_3$$

Subject to $2x_1 - x_2 + 2x_3 \le 2$,
 $x_1 - x_2 \le 3$,
 $x_2 + 2x_2 - 2x_2 \le 4$.

$$x_1 + 2x_2 - 2x_3 \le 4$$
,
 $x_1, x_2, x_3 \ge 0$

- 25. How does K-T theory leads to the primal dual concept in the optimization theory? Explain.
- 26. Minimize

$$f(X) = \frac{c_1}{x_1 x_2 x_3} + c_2 x_2 x_3 + c_3 x_1 x_3 + c_4 x_1 x_2, c_i > 0, \ x_j > 0 \ for \ i \ 1,2,3,4 \ and \ j = 1,2,3.$$

Complete the solution for $c_1 = c_2 = 40$, $c_3 = 20$, $c_4 = 10$ m Limonysog me

27. Minimize $x_1^2 + 3x_2^2 - 2x_1x_2 - 4x_2 + 5$ by the method of axial directions starting from (4.2, -2.0). Take $\in = 0.1$, $\lambda = 1$, $\mu = 1$ mass at $\lambda + \lambda \lambda = \infty$ notional oil radiodwished Signature.

4. Write the computational steps for conjug ****** If method