\qquad

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, MARCH 2018

(Regular/Supplementary/Improvement)
(CUCSS - PG)

CC15 PMT4 C16 -DIFFERENTIAL GEOMETRY

(Mathematics)
(2015 Admission onwards)
Time: Three Hours
Maximum:36 Weightage

Part A

Answer all questions. Each question carries 1 weightage.

1. Show that the graph of any function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a level set for some function $F: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$.
2. Check whether $f\left(x_{1}, x_{2}\right)=x_{1}{ }^{2}+x_{2}{ }^{2}$ where $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ is smooth and if smooth sketch the gradient vector field.
3. Show that if an n - surface S is represented both as $f^{-1}(c)$ and $g^{-1}(d)$ where $\nabla f(p) \neq 0$ and $\nabla g(p) \neq 0$ for all $p \in S, \nabla f(p)=\lambda \nabla g(p)$ for some real number $\lambda \neq 0$.
4. Show that the two orientations on the $n-$ sphere $x_{1}{ }^{2}+x_{2}{ }^{2}+\ldots \ldots \ldots+x_{n+1}{ }^{2}=r^{2}$ of radius $r>0$ are given by $\mathbb{N}_{1}(p)=\left(p, \frac{p}{r}\right)$ and $\mathbb{N}_{2}(p)=\left(p, \frac{-p}{r}\right)$.
5. Show that if S is a connected n - surface in \mathbb{R}^{n+1} and $g: S \rightarrow \mathbb{R}$ is smooth and takes only +1 and -1 then g is a constant.
6. Define Geodesic in an n-surface $S \subseteq \mathbb{R}^{n+1}$ and prove that geodesics have constant speed.
7. Prove that the velocity vector field along a parametrised curve α in an n-surface S is parallel if and only if α is a geodesic.
8. Let $\alpha(t)=(x(t), y(t)), t \in I$ be a local parametrisation of the oriented plane curve C, show that κ o $\alpha=\frac{x^{\prime} y^{\prime \prime}-y^{\prime} x^{\prime \prime}}{\left[\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}\right]^{3 / 2}}$ where κ curvature of C at p.
9. Prove that $\nabla_{\mathbb{V}}(\mathbb{X}+\mathbb{Y})=\nabla_{\mathrm{V}}(\mathbb{X})+\nabla_{\mathrm{V}}(\mathbb{Y})$ where \mathbb{X} and \mathbb{Y} are smooth vector fields on an open set U in \mathbb{R}^{n+1}.
10. Find the length of the parametrised curve $\alpha: I \rightarrow \mathbb{R}^{n+1}$ given by $\alpha(t)=(\sqrt{2} \cos 2 t, \sin 2 t, \sin 2 t)$, for $I=[0,2 \pi], \mathrm{n}=2$
11. Let S be an oriented n - surface in \mathbb{R}^{n+1} and let $p \in S$. Define the first and second fundamental form of S at p.
12. Let S be an oriented n - surface in \mathbb{R}^{n+1} and let $p \in S$. Give a formula for computing $\varkappa(p)$, the Gauss Kronecker curvature.
13. Show that a parametrised1- surface is simply a regular parametrised curve.
14. Show that if $S=f^{-1}(c)$ is an n - surface in \mathbb{R}^{n+k} and $p \in S$, then the tangent space S_{p} to S at p is equal to the kernel of $d f_{p}$.
($14 \times 1=14$ weightage)

Part B

Answer any seven questions. Each question carries 2 weightage
15. Find the Maximal Integral curve of the vector field \mathbb{X} defined by $\mathbb{X}\left(x_{1}, x_{2}\right)=$ $\left(x_{2},-x_{1}\right)$ through $p=(1,1)$.
16. Let $U \subset \mathbb{R}^{n+1}$ be open and $f: U \rightarrow \mathbb{R}$ be smooth. Let $p \in U$ be a regular point of f and let $c=f(p)$ then prove that the set of all vectors tangent to $f^{-1}(c)$ at p is equal to the orthogonal complement of $\nabla f(p)$.
17. State and prove Legrange Multiplier theorem.
18. Describe the spherical image of the $n-$ surface,$-x_{1}{ }^{2}+x_{2}{ }^{2}+x_{3}{ }^{2}+\cdots \ldots \ldots+x_{n+1}{ }^{2}$, $x_{1}>0$ when $n=1$ and $n=2$ oriented by $\frac{\nabla f}{\|\nabla f\|}$.
19. State and prove the existence of a maximal geodesic in an n - surface.
20. Prove that the Weingarten map \mathcal{L}_{p} is self adjoint.
21. The normal component of the acceleration is same for all parameterised curves α in S passing through p with velocity $\overline{\mathrm{v}}$.
22. Let C be a connected oriented plane curve and let $\beta: I \rightarrow C$ be a unit speed global parametrisation of C. Then prove that β is either one- one or periodic.
23. Find the Gaussian curvature of the ellipsoid $\frac{x_{1}{ }^{2}}{4}+\frac{x_{2}{ }^{2}}{4}+\frac{x_{3}{ }^{2}}{9}=1$
24. State and prove the Inverse Function Theorem for $n-$ surfaces.
($7 \times 2=14$ weightage)

Part C

Answer any two questions. Each question carries 4 weightage.
25 . Let S be a compact connected oriented n-surface in \mathbb{R}^{n+1} expressed as the level set $f^{-1}(c)$ of a smooth function $f: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ with $\nabla f(p) \neq 0 \forall p \in S$, then prove that Gauss map is onto.
26. Let \mathbb{X} be a smooth vector field on an open set $U \subseteq \mathbb{R}^{n+1}$ and let $p \in U$. Prove the existence and uniqueness of the maximal integral curve of S through p.
27. Let S be a compact connected oriented n-surface in \mathbb{R}^{n+1}. Prove that there exists a point $p \in S$ such that the second fundamental form at p is definite.
28. Obtain Gaussian curvature of an ellipsoid

