(Pages: 2)

Name			•	 •	 •	•	•	•	•	•	•	•	•
Reg.No	• •	•	•		 •	•	•		•		•	•	•

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, MARCH 2018

(Regular/Supplementary/Improvement)

(CUCSS - PG)

CC15 PMT4 C16 – DIFFERENTIAL GEOMETRY

(Mathematics)

(2015 Admission onwards)

Time: Three Hours

Maximum:36 Weightage

Part A

Answer all questions. Each question carries 1 weightage.

- Show that the graph of any function f: ℝⁿ → ℝ is a level set for some function F: ℝⁿ⁺¹ → ℝ.
- 2. Check whether $f(x_1, x_2) = x_1^2 + x_2^2$ where $(x_1, x_2) \in \mathbb{R}^2$ is smooth and if smooth sketch the gradient vector field.
- Show that if an *n* surface S is represented both as f⁻¹(c) and g⁻¹(d) where ∇f(p) ≠ 0 and ∇g(p) ≠ 0 for all p ∈ S, ∇f(p) = λ∇g(p) for some real number λ ≠ 0.
- 4. Show that the two orientations on the n-sphere $x_1^2 + x_2^2 + \dots + x_{n+1}^2 = r^2$ of radius r > 0 are given by $\mathbb{N}_1(p) = (p, \frac{p}{r})$ and $\mathbb{N}_2(p) = (p, \frac{-p}{r})$.
- 5. Show that if *S* is a connected *n* surface in \mathbb{R}^{n+1} and $g: S \to \mathbb{R}$ is smooth and takes only +1 and -1 then *g* is a constant.
- 6. Define Geodesic in an *n*-surface $S \subseteq \mathbb{R}^{n+1}$ and prove that geodesics have constant speed.
- 7. Prove that the velocity vector field along a parametrised curve α in an *n*-surface *S* is parallel if and only if α is a geodesic.
- 8. Let $\alpha(t) = (x(t), y(t)), t \in I$ be a local parametrisation of the oriented plane curve *C*, show that $\kappa o \alpha = \frac{x'y'' - y'x''}{[(x')^2 + (y')^2]^{3/2}}$ where κ curvature of *C* at *p*.
- Prove that ∇_v(X + Y) = ∇_v(X) + ∇_v(Y) where X and Y are smooth vector fields on an open set U in ℝⁿ⁺¹.
- 10. Find the length of the parametrised curve $\alpha: I \to \mathbb{R}^{n+1}$ given by $\alpha(t) = (\sqrt{2}\cos 2t, \sin 2t, \sin 2t)$, for $I = [0, 2\pi]$, n = 2
- 11. Let S be an oriented n- surface in \mathbb{R}^{n+1} and let $p \in S$. Define the first and second fundamental form of S at p.
- 12. Let *S* be an oriented *n* surface in \mathbb{R}^{n+1} and let $p \in S$. Give a formula for computing $\varkappa(p)$, the Gauss Kronecker curvature.
- 13. Show that a parametrised1- surface is simply a regular parametrised curve.

16P402

14. Show that if $S = f^{-1}(c)$ is an *n*- surface in \mathbb{R}^{n+k} and $p \in S$, then the tangent space S_p to S at p is equal to the kernel of df_p .

(14 x 1 = 14 weightage)

Part B

Answer any seven questions. Each question carries 2 weightage

- 15. Find the Maximal Integral curve of the vector field X defined by $X(x_1, x_2) = (x_2, -x_1)$ through p = (1, 1).
- 16. Let $U \subset \mathbb{R}^{n+1}$ be open and $f: U \to \mathbb{R}$ be smooth. Let $p \in U$ be a regular point of f and let c = f(p) then prove that the set of all vectors tangent to $f^{-1}(c)$ at p is equal to the orthogonal complement of $\nabla f(p)$.
- 17. State and prove Legrange Multiplier theorem.
- 18. Describe the spherical image of the *n* surface, $-x_1^2 + x_2^2 + x_3^2 + \dots + x_{n+1}^2$, $x_1 > 0$ when n = 1 and n = 2 oriented by $\frac{\nabla f}{\|\nabla f\|}$.
- 19. State and prove the existence of a maximal geodesic in an n- surface.
- 20. Prove that the Weingarten map \mathcal{L}_p is self adjoint.
- 21. The normal component of the acceleration is same for all parameterised curves α in S passing through p with velocity \overline{v} .
- 22. Let *C* be a connected oriented plane curve and let $\beta : I \to C$ be a unit speed global parametrisation of *C*. Then prove that β is either one- one or periodic.
- 23. Find the Gaussian curvature of the ellipsoid $\frac{x_1^2}{4} + \frac{x_2^2}{4} + \frac{x_3^2}{9} = 1$
- 24. State and prove the Inverse Function Theorem for n surfaces.

(7 x 2 = 14 weightage)

Part C

Answer any *two* questions. Each question carries 4 weightage.

- 25. Let S be a compact connected oriented *n*-surface in \mathbb{R}^{n+1} expressed as the level set $f^{-1}(c)$ of a smooth function $f: \mathbb{R}^{n+1} \to \mathbb{R}$ with $\nabla f(p) \neq 0 \forall p \in S$, then prove that Gauss map is onto.
- 26. Let X be a smooth vector field on an open set $U \subseteq \mathbb{R}^{n+1}$ and let $p \in U$. Prove the existence and uniqueness of the maximal integral curve of *S* through *p*.
- 27. Let S be a compact connected oriented n-surface in \mathbb{R}^{n+1} . Prove that there exists a point $p \in S$ such that the second fundamental form at p is definite.
- 28. Obtain Gaussian curvature of an ellipsoid

(2 x 4 = 8 weightage)