\qquad
FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2019
(CUCSS - PG)
(Mathematics)
CC15P MT4 E02 - ALGEBRAIC NUMBER THEORY
(Improvement/Supplementary)
(2015 \& 2016 Admissions)
Time: Three Hours
Maximum: 36 Weightage

Part A

Answer all questions. Each question carries 1 weightage.

1. Show that Q is not a cyclic group.
2. Find the order of the group G / H where G is free abelian with Z-basis, x, y, z and H is generated by $2 \mathrm{x}, 3 \mathrm{y}, 7 \mathrm{z}$
3. Prove that an algebraic integer is a rational number iff it is a rational integer.
4. Let $\left\{\alpha_{1}, \alpha_{2},---, \alpha_{n}\right\}$ be any Q-basis of K. Then prove that

$$
\Delta\left[\alpha_{1}, \alpha_{2},---, \alpha_{n}\right]=\operatorname{det}\left(T\left(\alpha_{i} \alpha_{j}\right)\right.
$$

5. Let $\mathrm{K}=\mathrm{Q}(\xi)$ where $\xi=e^{\frac{2 \pi i}{p}}$ for a rational prime p . In the ring of integers $\mathrm{Z}[\xi]$, show that $\alpha \in \mathrm{Z}(\xi)$ is a unit iff $\mathrm{N}_{\mathrm{k}}(\alpha)= \pm 1$
6. Which of the following elements of $Z[i]$ are irreducible? $1+\mathrm{i}, 5,12 \mathrm{i}$. Justify your answer.
7. Let D be an arbitrary domain, x be a non-zero non-unit element of D . Prove that x is irreducible iff $\langle x\rangle$ is maximal along the proper principal ideals of D.
8. Give an example of an integral domain which has no irreducible elements at all.
9. Let R be a ring and α be a maximal ideal of R . Show that R / α is a field.

10 . Find all fractional ideals of $\mathrm{Z}[\mathrm{i}]$
11. Sketch the lattice in R^{2} generated by $(1,1)$ and $(2,3)$ and find a fundamental domain for the lattice.
12. Show that the quotient group R / Z is isomorphic to the circle group S.
13. Let L be an m-dimensional lattice in R^{n}. Prove that R^{n} / L is isomorphic to $T^{m} \times R^{n-m}$
14. Let $\mathrm{K}=\mathrm{Q}(\theta)$ where $\theta^{3}=3$. What is the map $\sigma: \mathrm{K} \rightarrow \mathrm{L}^{\text {st }}$ in this case?
($14 \times 1=14$ Weightage)

Part B

Answer any seven questions. Each question carries 2 weightage.
15. Compute integral basis and discriminant for $\mathrm{Q}(\sqrt{2}, \sqrt{3})$
16. Show that if K is a number field then $K=Q(\theta)$ for some algebraic number θ
17. Show that every number field K possesses an integral basis, and the additive group of the ring of integers is a free abelian group of rank n, where n is the degree of K
18. Show that the discriminant of $\mathrm{Q}(\xi)$, where $\xi=e^{\frac{2 \pi i}{p}}$ and p is an odd prime is $(-1)^{\frac{p-1}{2}} p^{p-2}$
19. Let K be a number field of degree n. Prove that D, the ring of integers of K, is a free abelian group of rank n
20. Show that every principal ideal domain is a unique factorization domain.
21. Show that if a, b are non-zero ideals of the ring of integers D of a number field K , then there exists $\alpha \in \mathrm{a}$ such that $\alpha \alpha^{-1}+\mathrm{b}=\mathrm{D}$
22. Prove that an integral domain D is noetherian iff D satisfies the maximal condition.
23. If $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are integers such that $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{z}^{2}$, prove that at least one of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ is a multiple of 3
24. Let $\mathrm{K}=\mathrm{Q}(\xi)$, where $\xi=e^{\frac{2 \pi i}{p}}$ for an odd prime p . Show that the only roots of unity in K are $\pm \xi^{s}$ for integers s

$$
\text { (} 7 \times 2=14 \text { Weightage) }
$$

Part C

Answer any two questions. Each question carries 4 weightage.
25. (a) Show that the algebraic integers form a subring of the field of algebraic numbers.
(b) Let $\mathrm{K}=\mathrm{Q}(\theta)$ be a number field. Prove that if all k -conjugates of θ are real, then the discriminant of any basis is positive.
26. Show that in a domain in which factorization into irreducibles is possible, factorization is unique if every irreducible is prime.
27. Factorize the ideal $\langle 18>$ in $\mathrm{Z}[\sqrt{-17}]$
28. Sketch a proof of Kummer's theorem, including a proofs of some of the main steps.

