FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2019

 (CUCSS - PG)(Mathematics)

CC15P MT4 C16 / CC17P MT4 E14 - DIFFERENTIAL GEOMETRY

(Regular/Improvement/Supplementary)
(2015 Admission onwards)
Time: Three Hours

Part A

Answer all questions. Each question carries 1 weightage

1. Find the integral curve through the point $p=(1,1)$ of the vector field $\mathbb{X}(p)=(p, X(p))$, where $X(p)=(0,1)$ on \mathbb{R}^{2}
2. Show that the graph of any function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, is a level set for some function $F: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$
3. Let $f: U \rightarrow \mathbb{R}$ be a smooth function, where $U \subset \mathbb{R}^{n+1}$ is an open set, and let $\alpha: I \rightarrow U$ be a parametrized curve. Show that $(f \circ \alpha)$ is constant if and only if $\dot{\alpha}(t) \perp \nabla f(\alpha(t))$ for all $t \in I$
4. Sketch the cylinder $f^{-1}(0)$ where $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}-x_{2}{ }^{2}$
5. Let S be an oriented n-surface in \mathbb{R}^{n+1}, with orientation \mathbb{N} and let $p \in S$. Show that an ordered basis for S_{p} is inconsistent with \mathbb{N} if and only if it is consistent with $-\mathbb{N}$
6. Describe the spherical image of the 2 -surface $x_{2}^{2}+x_{3}^{2}=1$ oriented by $\frac{\nabla f}{\|\nabla f\|}$, where $f\left(x_{1}, x_{2}, x_{3}\right)=x_{2}^{2}+x_{3}^{2}$
7. Find the velocity, the acceleration and the speed of the parameterized curve

$$
\alpha(t)=(\cos t, \sin t, t)
$$

8. Define Euclidean parallel and Levi-Civita parallel.
9. Compute $\nabla_{\mathrm{v}} \mathrm{f}$ where $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $f\left(x_{1}, x_{2}\right)=2 x_{1}{ }^{2}+3 x_{2}{ }^{2}, v=(1,0,2,1)$
10. Let $g: I \rightarrow R$ be a smooth function and let C denote the graph of g. Show that the curvature of C at the point $(t, g(t))$ is $\frac{g^{\prime \prime}(t)}{\left(1+\left(g^{\prime}(t)\right)^{2}\right)^{3 / 2}}$, for an appropriate choice of orientation.
11. Find the length of the parameterized curve $\alpha: I \rightarrow \mathbb{R}^{3}$ where $I=[-1,1]$ and $\alpha(t)=(\cos 3 t, \sin 3 t, 4 t)$
12. Define normal section of an n-surface.
13. Define Weingarten map for parametrized n-surfaces.
14. State inverse function theorem for n -surfaces.

Answer any seven questions. Each question carries 2 weightage
15. Define level set of a function $f: U \rightarrow \mathbb{R}, U \subset \mathbb{R}^{n+1}$. Sketch the level sets $f^{-1}(c)$ for $\mathrm{n}=0$ and 1 for the function $f\left(x_{1}, \ldots, x_{n+1}\right)=x_{n+1} ; C=-1,0,1,2$
16. Define a vector field on \mathbb{R}^{n+1}. Sketch the vector field $\mathbb{X}(p)=(p, X(p))$ on \mathbb{R}^{2} where

$$
X\left(x_{1}, \quad x_{2}\right)=\left(-x_{1},-x_{2}\right)
$$

17. Let S be unit circle $x_{1}{ }^{2}+{x_{2}}^{2}=1$ and define $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $g\left(x_{1}, x_{2}\right)=a x_{1}{ }^{2}+2 b x_{1} x_{2}+$ $c x_{2}{ }^{2}$ where $a, b, c \in \mathbb{R}$. Show that the extreme point of g on S are the eigenvector of a matrix $\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]$
18. Show that the two orientation on the n -sphere $x_{1}{ }^{2}+{x_{2}}^{2}+\cdots .+x_{n+1}{ }^{2}=r^{2}$ of radius $r>0$ are given by $\mathbb{N}_{1}(p)=\left(p, \frac{p}{r}\right) \& \mathbb{N}_{2}(p)=\left(p, \frac{-p}{r}\right)$
19. Prove that in an n-plane, parallel transport is path independent.
20. Show that the Weingarten map L_{p} is self adjoint.
21. Prove that for each 1-form ω on open set U in \mathbb{R}^{n+1}, there exist unique functions $f_{i}: U \rightarrow R$, $i=1,2, \ldots, n+1$, such that $\omega=\sum_{i=1}^{n+1} f_{i}-d x_{i}$. Show further that ω is smooth if and only if each f_{i} is smooth
22. Let S be an oriented n-surface in \mathbb{R}^{n+1} and let \mathbb{v} be a unit vector in $S_{p}, p \in S$. Prove that there exists an open set $\mathrm{V} \subset \mathbb{R}^{n+1}$ containing p such that $S \cap \mathcal{N}(\mathbb{v}) \cap \mathrm{V}$ is a plane curve. Also prove that the curvature at p of this curve (suitably oriented) equals the normal curvature $K(\mathbb{v})$
23. Let $\varphi: U \rightarrow \mathbb{R}^{3}$ be given by $\varphi(\theta, \phi)=(r \cos \theta \sin \phi, r \sin \theta \sin \phi, r \cos \phi)$ where $U=\left\{(\theta, \phi) \in \mathbb{R}^{2}: 0<\phi<\pi\right\}$ and $r>0$.Then show that φ is a parametrized 2-surface.
24. Show for a parameterized n-surface $\varphi: U \rightarrow \mathbb{R}^{n+1}$ in \mathbb{R}^{n+1} and for $p \in U$, there exists an open set $U_{1} \subset U$ about p such that $\varphi\left(U_{1}\right)$ is an n-surface in \mathbb{R}^{n+1}

($7 \times 2=14$ Weightage $)$

Part C

Answer any two questions. Each question carries 4 weightage.
25. What do you mean by a vector at a point p tangent to a level set in $f^{-1}(c)$ of a smooth function $f: U \rightarrow \mathbb{R}$, where U is open in \mathbb{R}^{n+1} ? Show that, for such a function f with a regular point $p \in U$, the set of all vectors tangent to $f^{-1}(c)$ at p is equal to $[\nabla f(p)]^{\perp}$
26. Let S be an n-surface in $\mathbb{R}^{n+1}, p \in S$ and $\mathbb{v} \in S_{p}$. Then prove there exists an open interval I containing 0 and a geodesic $\alpha: I \rightarrow S$ such that:
(i) $\alpha(0)=p$ and $\dot{\alpha}(0)=\mathbb{v}$
(ii) $\beta: \hat{I} \rightarrow S$ is any other geodesic in S with $\beta(0)=p$ and $\dot{\beta}(0)=\mathbb{v}$ then $\hat{I} \subset I$ and $\alpha(0)=\beta(0)$ for all $t \in \hat{I}$
27. Let $\alpha: I \rightarrow \mathbb{R}^{3}$ be a unit speed parametrized curve in \mathbb{R}^{3} such that $\dot{\alpha}(t) \times \ddot{\alpha}(t) \neq 0$ for all $t \in I$. Let \mathbb{T}, \mathbb{N} and \mathbb{B} denote the vector fields along α defined by $\mathbb{T}(t)=\dot{\alpha}(t)$,
$\mathbb{N}(t)=\ddot{\alpha}(t) /\|\ddot{\alpha}(t)\|$ and $\mathbb{B}(t)=\mathbb{T}(t) \times \mathbb{N}(t)$ for all $t \in I$
(i) Show that $\{\mathbb{T}(t), \mathbb{N}(t), \mathbb{B}(t)\}$ is orthonormal for all $t \in I$
(ii) Show that there exist a smooth function $\kappa: I \rightarrow R$ and $\tau: I \rightarrow S$ such that $\dot{\mathbb{T}}=\kappa \mathbb{N}$,

$$
\dot{\mathbb{N}}=-\kappa \mathbb{T}+\tau \mathbb{B}, \dot{\mathbb{B}}=-\tau \mathbb{N}
$$

28. (i) Let S be a compact oriented n-surface in \mathbb{R}^{n+1}. Prove that there exists a point p on S such that the second fundamental form of S at p is definite.
(ii) Find the Gaussian curvature $K: S \rightarrow \mathbb{R}$, where S is the ellipsoid $\frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}}+\frac{x_{3}^{2}}{c^{2}}=1$, (a, b and c all $\neq 0$)
