17P402

FOURTH SEMESTER M.Sc. DEGREE

(CUCSS -(Mathemat

CC15P MT4 C16 / CC17P MT4 E14 -

(Regular/Improvement/ (2015 Admission

Time: Three Hours

Part A

Answer all questions. Each question carries 1 weightage.

- where X(p) = (0,1) on \mathbb{R}^2
- $t \in I$
- 4. Sketch the cylinder $f^{-1}(0)$ where $f(x_1, x_2, x_3) = x_1 x_2^2$
- ordered basis for S_p is inconsistent with N if and only if it is consistent with -N

 $f(x_1, x_2, x_3) = x_2^2 + x_3^2$

- 7. Find the velocity, the acceleration and the speed of the parameterized curve
- 8. Define Euclidean parallel and Levi-Civita parallel.
- 9. Compute $\nabla_v f$ where $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x_1, x_2) = 2x_1^2 + 3x_2^2, v = (1, 0, 2, 1)$

of *C* at the point
$$(t, g(t))$$
 is $\frac{g''(t)}{(1+(g'(t))^2)^{3/2}}$,

11. Find the length of the parameterized curve $\alpha: I \to \mathbb{R}^3$ where I = [-1,1] and

- 12. Define normal section of an n-surface.
- 13. Define Weingarten map for parametrized n-surfaces.
- 14. State inverse function theorem for n-surfaces.

(1)

3)	Name
	Reg.No
E EXAMINATION, APRIL 2019	
PG)	
tics)	
DIFFERENTIAL GEOMETRY	
t/Supplementary)	
n onwards)	

Maximum: 36 Weightage

1. Find the integral curve through the point p = (1, 1) of the vector field $\mathbb{X}(p) = (p, X(p))$,

2. Show that the graph of any function $f: \mathbb{R}^n \to \mathbb{R}$, is a level set for some function $F: \mathbb{R}^{n+1} \to \mathbb{R}$ 3. Let $f: U \to \mathbb{R}$ be a smooth function, where $U \subset \mathbb{R}^{n+1}$ is an open set, and let $\alpha: I \to U$ be a parametrized curve. Show that $(f \circ \alpha)$ is constant if and only if $\dot{\alpha}(t) \perp \nabla f(\alpha(t))$ for all

5. Let S be an oriented n-surface in \mathbb{R}^{n+1} , with orientation N and let $p \in S$. Show that an 6. Describe the spherical image of the 2-surface $x_2^2 + x_3^2 = 1$ oriented by $\frac{\nabla f}{\|\nabla f\|}$, where

 $\alpha(t) = (\cos t, \sin t, t)$

10. Let $g: I \to R$ be a smooth function and let *C* denote the graph of *g*. Show that the curvature

for an appropriate choice of orientation.

 $\alpha(t) = (\cos 3t, \sin 3t, 4t)$

Part B

Answer any seven questions. Each question carries 2 weightage.

15. Define level set of a function $f: U \to \mathbb{R}, U \subset \mathbb{R}^{n+1}$. Sketch the level sets $f^{-1}(c)$ for n = 0 and 1

for the function $f(x_1, ..., x_{n+1}) = x_{n+1}$; C = -1, 0, 1, 2

16. Define a vector field on \mathbb{R}^{n+1} . Sketch the vector field $\mathbb{X}(p) = (p, X(p))$ on \mathbb{R}^2 where

 $X(x_1, x_2) = (-x_1, -x_2)$

17. Let S be unit circle $x_1^2 + x_2^2 = 1$ and define $g: \mathbb{R}^2 \to \mathbb{R}$ by $g(x_1, x_2) = ax_1^2 + 2bx_1x_2 + bx_2x_2 + bx$ $c x_2^2$ where a, b, $c \in \mathbb{R}$. Show that the extreme point of g on S are the eigenvector of a matrix $\begin{bmatrix} a & b \\ b & c \end{bmatrix}$

18. Show that the two orientation on the n-sphere $x_1^2 + x_2^2 + \cdots + x_{n+1}^2 = r^2$ of radius r > 0 are given by $\mathbb{N}_1(p) = (p, \frac{p}{r}) \& \mathbb{N}_2(p) = (p, \frac{-p}{r})$

- 19. Prove that in an n-plane, parallel transport is path independent.
- 20. Show that the Weingarten map L_n is self adjoint.
- 21. Prove that for each 1-form ω on open set U in \mathbb{R}^{n+1} , there exist unique functions $f_i: U \to R$, i = 1, 2, ..., n + 1, such that $\omega = \sum_{i=1}^{n+1} f_i - dx_i$. Show further that ω is smooth if and only if each f_i is smooth.
- 22. Let S be an oriented n-surface in \mathbb{R}^{n+1} and let \mathbb{V} be a unit vector in $S_n, p \in S$. Prove that there exists an open set $\bigvee \subset \mathbb{R}^{n+1}$ containing p such that $S \cap \mathcal{N}(\mathbb{V}) \cap \bigvee$ is a plane curve. Also prove that the curvature at p of this curve (suitably oriented) equals the normal curvature $K(\mathbb{V})$

23. Let $\varphi: U \to \mathbb{R}^3$ be given by $\varphi(\theta, \phi) = (r \cos \theta \sin \phi, r \sin \theta \sin \phi, r \cos \phi)$ where

 $U = \{(\theta, \phi) \in \mathbb{R}^2 : 0 < \phi < \pi\}$ and r > 0. Then show that φ is a parametrized 2-surface.

24. Show for a parameterized *n*-surface $\varphi: U \to \mathbb{R}^{n+1}$ in \mathbb{R}^{n+1} and for $p \in U$, there exists an open set $U_1 \subset U$ about p such that $\varphi(U_1)$ is an n-surface in \mathbb{R}^{n+1}

$$(7 \times 2 = 14 \text{ Weightage})$$

Part C

Answer any *two* questions. Each question carries 4 weightage.

25. What do you mean by a vector at a point p tangent to a level set in $f^{-1}(c)$ of a smooth function $f: U \to \mathbb{R}$, where U is open in \mathbb{R}^{n+1} ? Show that, for such a function f with a regular point $p \in U$, the set of all vectors tangent to $f^{-1}(c)$ at p is equal to $[\nabla f(p)]^{\perp}$

26. Let *S* be an n-surface in \mathbb{R}^{n+1} , $p \in S$ and $\mathbb{V} \in S_p$. Then prove there exists an open interval *I* containing 0 and a geodesic $\alpha: I \rightarrow S$ such that:

(i) $\alpha(0) = p$ and $\dot{\alpha}(0) = v$

- $\alpha(0) = \beta(0)$ for all $t \in \hat{I}$
- 27. Let $\alpha: I \to \mathbb{R}^3$ be a unit speed parametrized curve in \mathbb{R}^3 such that $\dot{\alpha}(t) \times \ddot{\alpha}(t) \neq 0$ for all $t \in I$. Let \mathbb{T}, \mathbb{N} and \mathbb{B} denote the vector fields along α defined by $\mathbb{T}(t) = \dot{\alpha}(t)$, $\mathbb{N}(t) = \frac{\ddot{\alpha}(t)}{\|\ddot{\alpha}(t)\|}$ and $\mathbb{B}(t) = \mathbb{T}(t) \times \mathbb{N}(t)$ for all $t \in I$
 - (i) Show that $\{\mathbb{T}(t), \mathbb{N}(t), \mathbb{B}(t)\}$ is orthonormal for all $t \in I$
 - (ii) Show that there exist a smooth function $\kappa: I \to R$ and $\tau: I \to S$ such that $\dot{\mathbb{T}} = \kappa \mathbb{N}$, $\dot{\mathbb{N}} = -\kappa \mathbb{T} + \tau \mathbb{B}, \ \dot{\mathbb{B}} = -\tau \mathbb{N}$
- 28. (i) Let S be a compact oriented n-surface in \mathbb{R}^{n+1} . Prove that there exists a point p on S such that the second fundamental form of *S* at *p* is definite.

 $(a, b \text{ and } c \text{ all } \neq 0)$

(3)

17P402

(ii) $\beta: \hat{I} \to S$ is any other geodesic in S with $\beta(0) = p$ and $\dot{\beta}(0) = v$ then $\hat{I} \subset I$ and

(ii) Find the Gaussian curvature $K: S \to \mathbb{R}$, where S is the ellipsoid $\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} + \frac{x_3^2}{a^2} = 1$,

$(2 \times 4 = 8 \text{ Weightage})$