Name: \qquad
\qquad

FIRST SEMESTER M.Sc. DEGREE EXTERNAL EXAMINATION FEB. 2016

 (2015 Admission)
CC15P CH1C01 - Basic Concepts in Quantum Chemistry and Group theory

(Chemistry)

Time: Three hours

Maximum weightage: 36

Section A

(Answer all questions. Each question has 1 weightage)

1. A wave function is given by $\psi=\sin x$ Is it acceptable? Is it normalized? Explain.
2. What is spherical harmonics? Write two examples.
3. Define Hermitian operator.
4. What is Ladder operator? What is its significance?
5. Write a general expression for Legendre polynomials.Find out the legendre polynomials when $1=0,1,2$
6. What is recursion formula? Give its significance.
7. What is inverse and conjugate of an operator? Give examples.
8. Give the number of irreducible representations of the C_{s} point group and obtain their dimensions.
9. Give the product of $\mathrm{C}_{2}{ }^{\mathrm{x}} \mathrm{\sigma}_{\mathrm{xy}}$ using matrix reprsentations.
10. What are the distinct operations generated by C_{6} axis?
11. What are representations? Construct a representation using p_{x} and p_{y} orbital as basis for a $\mathrm{C}_{2 \mathrm{v}}$ point group.
12. What does $\mathrm{A}_{2 \mathrm{u}}$ and $\mathrm{B}_{2 \mathrm{~g}}$ representations mean?
($12 \times 1=12$ weightage $)$

Section B

(Answer any 8 questions. Each question carries 2 weightage.)
13. Discuss the postulates of quantum mechanics.
14. Discuss the features and significance of solution of one dimensional box.
15. Find the eigen values and eigen functions of a particle in three dimensional box. Explain the term degeneracy

16 Calculate the average value of momentum of a particle confined to one dimensional box of length ' a '
17. State and explain the spin postulate by Uhlenbeck.What is a spin orbital?

18 Taking a suitable example illustrate the properties of a mathematical group.
19. Derive the Group multiplication table for $\mathrm{C}_{2 \mathrm{~h}}$ point group
20. Construct a representation for ammonia taking all the Cartesian coordinates of atoms as basis.

21 Assign the symmetry operations in a $\mathrm{D}_{3 \mathrm{~h}}$ point group taking a suitable example
22 .State Great Orthogonality theorem.Discuss its properties
23. What is similarity transformation? Find out the classes in a $\mathrm{C}_{2 \mathrm{v}}$ point group.
24. Derive the wave functions in real form for the particle on a ring from the wave equation in spherical polar coordinates
($8 \times 2=16$ weightage)

Section C

(Answer any 2 questions. Each question carries 4 weightage)

25. Apply Schrodinger equation for a harmonic oscillator. Find eigen values and eigen functions. Sketch the wave functions
26. Apply Schrodinger equation for H atom. Transform it into spherical polar co-ordinates and separate the variables and solve for radial equation.
27. Show that the square of the angular momentum and its z component can be specified simultaneously. Discuss space quantization.
28. Construct the character table of $\mathrm{C}_{4 \mathrm{v}}$ point group
($2 \times 4=8$ weightage)
