(Pages:2)

Name:	•
Reg. No	

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2016

(Regular/Supplementary/Improvement)

(CUCSS-PG)

CC15PCH1C01 – BASIC CONCEPTS IN QUANTUM CHEMISTRY AND GROUP THEORY

(Chemistry)

(2015 Admission Onwards)

Time: Three Hours

Maximum: 36 Weightage

Section A

(Answer all questions. Each question has 1 weightage)

1. The solutions for a planar rotator is given by $\varphi = \frac{1}{\sqrt{\pi}} e^{im\phi}$ (m=0, ±1, ±2.....). Express the

solutions as real functions.

- 2. Show that eigen functions of a rigid rotor are also eigen functions of L^{2} operator
- 3. Write complete wave equation for an electron in the state n=1, l=0, m=0
- 4. Write recursion formula. Explain its significance.
- 5. Write associated Laguerre equation. Explain the terms
- 6. Define the term degeneracy of an energy level. Calculate the degeneracies of a particle in a 3D cubical box having energies equal to i) 6 and ii) 14 in units of h²/8ma²
- 7. What do you mean by polar plot. Draw one polar plot.
- 8. Show that wave function $\psi_{(1)x}$ for SHO is normalized.
- 9. Write the matrices for C_3 , C_3^2 , S_4 operations.
- 10. What meaning is implied in the Mulliken symbols A_1 , A_2 and E in C_{3v} point group?
- 11. Distinguish between conjugate operations and inverse operations.
- 12. What is an abelian group? Give one example.

$(12 \times 1 = 12 \text{ weightage})$

Section B

(Answer any 8 questions. Each question carries 2 weightage)

- 13. Derive the wave equation for particle on a ring.
- 14. Write associated Legendre equation. What are its solutions? Write equations for Legendre polynomials and the normalization constant.

15. 1s wave function of H atom is $\frac{1}{\sqrt{\pi}} \left(\frac{1}{a_0}\right)^{3/2} e^{-(r/a_0)}$. Show that maximum probability to find the

electron is at $r = a_0$.

- 16. Find the commutator [Lx, Ly]
- 17. Explain quantum mechanical tunneling.
- 18. Calculate the expectation value for kinetic energy for $\psi_{(0)}$ for SHO.

16P110

- 19. Evaluate $|\Delta E| . |\Delta t|$. Also find the life time of the excited state species if the width of the spectral line is 0.15 cm⁻¹
- 20. Calculte the expectation value $\langle p_x \rangle$ for particle in one dimensional box for n = 1. Comment on the result.
- 21. What is meant by 'class' in a mathematical groups? Prove that three vertical planes in ammonia molecule belong to same class.
- 22. Determine the point groups of following molecules (a) pyridine (d) allene (c) staggered and eclipsed ethane (d) chair conformation of cyclohexane
- 23. Distinguish between reducible and irreducible representations. Give an example for both in a C_{3v} point group.
- 24. Reduce following reducible representations Γ_a and Γ_b in C_{3v} into irreducible representations. The C_{3v} character table is given.

C _{3v}	Е	$2C_3$	3σ
A ₁	1	1	1
A_2	1	1	-1
Е	2	-1	0
Γ _a	5	2	-1
$\Gamma_{\rm b}$	7	1	-1

 $(8 \times 2 = 16 \text{ weightage})$

Section C

(Answer any 2 questions. Each question carries 4 weightage)25. Apply Schrodinger equation for simple harmonic oscillator. Find eigen values and eigen functions.

26. The R equation for H atom is given by

$$\frac{1}{R(r)}\frac{\partial}{\partial r}r^{2}\frac{\partial}{\partial r}R(r) + \frac{8\pi^{2}m}{h^{2}}(E + \frac{e^{2}}{4\pi\varepsilon r}) = \beta$$

Solve the equation to find eigen values and eigen functions. (If unfamiliar solve the R equation which you are used to)

- 27. Prove that a) Eigen values of hermitian operators are real and b) Eigen functions of hermitian operators corresponding to two different eigen values are orthogonal.
- 28. State and explain great orthogonality theorem (GOT). What are the consequences of the theorem? Using GOT, derive the character table of C_{4v} point group.

(2 x 4 = 8 weightage)
