Name :

Reg.No :

FIRST SEMESTER M.Sc. DEGREE EXTERNAL EXAMINATION FEB. 2016 (2015 Admission) CC15P MT1 C05: DISCRETE MATHEMATICS

(Mathematics)

Time: Three Hours

Maximum: 36 Weightage

Part A (Short Answer Questions)

Answer **all** Questions Each question carries 1 Weightage

- 1. Define connectivity of a graph. Also find the connectivity of $K_{3,4}$
- 2. Define dual of a plane graph.
- 3. Give an example of an Eulerian graph with 5 vertices and 7 edges.
- 4. Define directed graph with an example.
- 5. Determine which complete bipartite graphs are complete graphs.
- 6. Give an example of a simple regular graph with 5 edges.
- 7. Define a partial ordering on a set X.
- 8. Define a Boolean algebra.
- 9. Define upper bound and lower bound on a partially ordered set.
- 10. Prove that every tree with at least two vertices has at least two leaves.
- 11. Define nfa.
- 12. State Jordan Curve Theorem.
- 13. Define atom with an example.
- 14. What are Regular languages?

(14 x 1 = 14 Weightage)

Part B (Short Essay Questions)

Answer any **seven** from the following ten questions (15 - 24) Each question carries 2 Weightage

- 15. From the definition of isomorphism, prove that $G \cong H$ if and only if $\overline{G} \cong \overline{H}$.
- 16. Draw Petersen graph. Also show that Petersen graph is not bipartite.
- 17. If G is a simple graph, then $K(G) \le K'(G) \le \delta(G)$.
- 18. State and prove Euler's formula.
- 19. Let X be a finite set and \leq be a partial order on X. Also R is a relation on X defined by xRy if and only if *y* covers $x(w.r.t. \leq)$. Show that \leq is generated by R.

15P105

- 20. Show that every finite Boolean algebra is isomorphic to a power set Boolean algebra, specifically, to the power set Boolean algebra of the set of all its atoms.
- 21. Write the following Boolean functions in their disjunctive normal forms:
 - (i) $f(x_1, x_2, x_3) = (x_1 + x_2')x_3' + x_2x_1'(x_2 + x_1'x_3).$
 - (ii) g(a,b,c) = (a+b+c)(a'+b+c')(a+b'+c')(a'+b'+c')(a+b+c').
- 22. Explain transition graph of a dfa with an example.
- 23. Show that $L = \{vwv: v, w \in \{a, b\}^*, |v| = 2\}$ is regular.
- 24. What do you mean by equivalent grammars? Explain with example.

(7 x 2 = 14 Weightage)

Part C (Essay Questions)

Answer any **two** from the following four questions (25-28) Each question carries 4 weightage

- 25. Prove that the complete graph K_n can be expressed as the union of k bipartite graphs if and only if $n \le 2^k$.
- 26. Show that for an *n*-vertex graph G (with $n \ge 1$), the following are equivalent.
 - (i) G is connected and has no cycles.
 - (ii) G is connected and has n 1 edges.
 - (iii) G has n 1 edges and no cycles.
 - (iv) *G* has no loops and has, for each $u, v \in V(G)$, exactly one u, v path.
- 27. Let $(X, +, \cdot, \cdot)$ be a Boolean algebra. Show that the following properties hold for all elements

x, y, z of X.

- (i) x + x = x and $x \cdot x = x$
- (ii) x + 1 = 1 and $x \cdot 0 = 0$
- (iii) $x + x \cdot y = x$ and $x \cdot (x + y) = x$
- (iv) x + (y + z) = (x + y) + z and $x \cdot (y \cdot z) = (x \cdot y) \cdot z$
- 28. Show that the grammar *G* with $\sum = \{a, b\}$ and productions $S \to SS, S \to \lambda, S \to aSb, S \to bSa$ generates the language L={w: $n_a(w) = n_b(w)$ }.

(2 x 4 = 8 Weightage)
