\qquad
\qquad

CC15P MT1 C01 : ALGEBRA- I

(Mathematics)

Time: Three hours
Maximum Weightage: 36

Part A
 Answer all the questions. Each question carries 1 weightage

1. Define an isometry of the Euclidean plane R^{2}. Give an example of an isometry.
2. Find the subgroup of Z_{18} generated by the subset $\{8,6,10\}$
3. Show that for two binary words of the same length, $d(u, v)=w t(u-v)$
4. Find all proper nontrivial subgroups of $\mathrm{Z}_{2} \times \mathrm{Z}_{2} \times \mathrm{Z}_{2}$
5. Describe the center of every simple abelian group.
6. Define solvable group and give one example of it.
7. Find the number of orbits in $\{1,2,3,4,5,6,7,8\}$ under the cyclic subgroup <(1356) > of S_{8}.
8. Show that center of a group of order 8 is non-trivial.
9. Find all sylow 3- subgroups of S_{4}.

10 . Find the reduced form and the inverse of the reduced form of $a^{2} a^{-3} b^{3} a^{4} c^{4} c^{2} a^{-1}$
11. Define the evaluation homomorphism.
12. Write the class equation for S_{3}.
13. State division algorithm for $\mathrm{F}[\mathrm{x}]$ where F is a field.
14. Give an example to show that a factor ring of an integral domain may have divisors of zero.
($14 \times 1=14$ weightage)

Part B
Answer any seven questions
Each question carries 2 weightage
15. Show that a subgroup M of a group G is a maximal normal subgroup of G iff G / M is simple.
16. Show that the finite indecomposable abelian groups are exactly the cyclic groups with order a power of a prime
17. Consider the $(6,3)$ linear code C with the standard generator matrix

List the code words in C. How many errors can always be corrected using this code?
18. Show that the multiplicative group of all non-zero elements of a finite field is cyclic.
19. Show that there are no simple groups of order $\mathrm{p}^{\mathrm{r}} \mathrm{m}$ where p is a prime and $\mathrm{m}<\mathrm{p}$
20. Demonstrate that $x^{4}-22 x^{2}+1$ is irreducible over Q.
21. Show that for a prime p every group G of order p^{2} is abelian.
22. Write all polynomials of degree ≤ 2 in $\mathrm{Z}_{2}[\mathrm{x}]$.
23. Show that a factor ring of a field is either the trivial ring of one element or is isomorphic to the field.
24. Let R be a commutataive ring with unity of prime characteristic p. Show that the map $\varphi_{\mathrm{p}}: \mathrm{R} \rightarrow \mathrm{R}$ given by $\varphi_{\mathrm{p}}(\mathrm{a})=\mathrm{G}^{\mathrm{P}}$ is a homomorphism.
($\mathbf{7} \times 2=14$ weightage)

Part C
 Answer any two, each carries 4 weightage

25. Determine all group of order 10 up to isomorphism
26. Show that set of commutators of a group G generates the smallest normal group C such that G / C is abelian. Determine the commutator subgroup C of D_{4} and the factor group $\mathrm{D}_{4} / \mathrm{C}$
27. Let P_{1} and P_{2} be sylow p- subgroups of a finite group G. Show that P_{1} and P_{2} are conjugate. Verify this theorem for S_{4} with $\mathrm{p}=3$.
28. State and prove Cauchy's theorem. Using this prove that a finite group G is a p-group iff $|G|$ is a power of p.
