Name: Reg. No.....

FIRST SEMESTER M. Sc. DEGREE EXTERNAL EXAMINATION, FEBRUARY 2016

(2015 Admission)

CC15P MT1 C01 : ALGEBRA- I

(Mathematics)

Time: Three hours

Maximum Weightage: 36

Part A

Answer **all** the questions.

Each question carries 1 weightage $\sum_{i=1}^{2} a_{i}$

- 1. Define an isometry of the Euclidean plane R^2 . Give an example of an isometry.
- 2. Find the subgroup of $Z_{18}\,$ generated by the subset $\{8,\,6,10\}$
- 3. Show that for two binary words of the same length, d(u,v) = wt(u-v)
- 4. Find all proper nontrivial subgroups of ~ $Z_2~\times~Z_2~\times Z_2$
- 5. Describe the center of every simple abelian group.
- 6. Define solvable group and give one example of it.
- 7. Find the number of orbits in $\{1,2,3,4,5,6,7,8\}$ under the cyclic subgroup $\langle (1 \ 3 \ 5 \ 6) \rangle$ of S_8 .
- 8. Show that center of a group of order 8 is non-trivial.
- 9. Find all sylow 3- subgroups of S_4 .
- 10. Find the reduced form and the inverse of the reduced form of $a^2 a^{-3} b^3 a^4 c^4 c^2 a^{-1}$
- 11. Define the evaluation homomorphism.
- 12. Write the class equation for S_3 .
- 13. State division algorithm for F[x] where F is a field.
- 14. Give an example to show that a factor ring of an integral domain may have divisors of zero.

(14 x 1=14 weightage)

Part B

Answer any seven questions

Each question carries 2 weightage

- 15. Show that a subgroup M of a group G is a maximal normal subgroup of G iff G/M is simple.
- 16. Show that the finite indecomposable abelian groups are exactly the cyclic groups with order a power of a prime
- 17. Consider the (6,3) linear code C with the standard generator matrix

1.

List the code words in C. How many errors can always be corrected using this code?

- 18. Show that the multiplicative group of all non-zero elements of a finite field is cyclic.
- 19. Show that there are no simple groups of order p^rm where p is a prime and m < p
- 20. Demonstrate that $x^4 22x^2 + 1$ is irreducible over Q.
- 21. Show that for a prime p every group G of order p^2 is abelian.
- 22. Write all polynomials of degree ≤ 2 in $Z_2[x]$.

- 23. Show that a factor ring of a field is either the trivial ring of one element or is isomorphic to the field.
- 24. Let R be a commutative ring with unity of prime characteristic p. Show that the map $\varphi_p : R \to R$ given by $\varphi_p(a) = G^P$ is a homomorphism.

(7 x 2=14 weightage)

Part C

Answer any two, each carries 4 weightage

- 25. Determine all group of order 10 up to isomorphism
- 26. Show that set of commutators of a group G generates the smallest normal group C such that G/C is abelian. Determine the commutator subgroup C of D_4 and the factor group D_4/C
- 27. Let P_1 and P_2 be sylow p- subgroups of a finite group G.Show that P_1 and P_2 are conjugate. Verify this theorem for S_4 with p = 3.
- 28. State and prove Cauchy's theorem. Using this prove that a finite group G is a p- group iff |G| is a power of p.

(2 x 4=8 weightage)
