\qquad

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2016

(Regular/Supplementary/Improvement)
(CUCSS-PG)
CC15P MT1 C01 - ALGEBRA-I
(Mathematics)
(2015 Admission Onwards)
Time: Three Hours
Maximum: 36 Weightage

Part A

Answer all Questions
Each question carries 1 weightage

1. Define an isometry of \mathbb{R}^{2} and give an example for it.
2. Find the order of the element $(3,10,9)$ in $\mathbb{Z}_{4} \times \mathbb{Z}_{12} \times \mathbb{Z}_{15}$.
3. Show that factor group of a cyclic group is cyclic.
4. Show that for two binary words of same length $d(u, v)=w t(u-v)$.
5. Show that \mathbb{Z} has no composition series.
6. Let X be a G-set. For $x_{1}, x_{2} \in X$, let $x_{1} \sim x_{2}$ if and only if there exists $g \in G$ such that $g x_{1}=x_{2}$. Show that \sim is an equivalence relation on X.
7. Let G be a group of order p^{n} and let X be a G-set. Prove that $|X| \equiv\left|X_{G}\right|(\bmod \mathrm{p})$ where p is a prime number.
8. Find the conjugate classes of S_{3} and write the class equation.
9. Find the reduced form and the inverse of the reduced form of $a^{2} b^{-1} b^{3} a^{3} c^{-1} c^{4} b^{-2}$.
10. Consider the evaluation homomorphism $\varphi_{5}: \mathbb{Q}[x] \rightarrow \mathbb{R}$. Find five elements in the kernal of φ_{5}.
11. If F is a field and $a \neq 0$, is a zero of $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ in $F[X]$. Show that $\frac{1}{a}$ is a zero of $a_{n}+a_{n-1} x+\cdots+a_{0} x^{n}$.
12. Write the element $(1+3 j)(4+2 j-k)$ of Q in the form $a_{1}+a_{2} i+a_{3} j+a_{4} k$ for $a_{i} \in \mathbb{R}$.
13. Let N be an ideal of a ring R. Then prove that $r: R \rightarrow R / N$ given by $r(x)=x+N$ is a ring homomorphism with kernal N.
14. Give an example to show that factor ring of an integral domain may be a field.

Part B

Answer any 7 Questions.
Each question carries 2 weightage
15. Prove that converse of Lagrange's theorem is not true.
16. Find isomorphic refinements of the two series $\{0\}<\langle 18\rangle<\langle 3\rangle<\mathbb{Z}_{72}$ and $\{0\}<\langle 24\rangle<\langle 12\rangle<\mathbb{Z}_{72}$.
17. Show that the group $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ is isomorphic to $\mathbb{Z}_{m n}$ if and only if m and n are relatively prime.
18. Prove that if H is a subgroup of a finite group G, then $(N[H]: H) \equiv(G: H)(\bmod p)$.
19. Find the number of orbits in $\{1,2,3,4,5,6,7,8\}$ under the cyclic group $<\left(\begin{array}{ll}1356\end{array}\right)>$ of S_{8}.
20. Prove that for a prime number p, every group G of order p^{2} is abelian.
21. Show that every group of order $(35)^{3}$ has a normal subgroup of order 125.
22. Show that the equation $x^{2}=2$ has no solution in rational numbers.
23. Find $q(x)$ and $r(x)$ where $f(x)=x^{5}-2 x^{4}+3 x-5$ and $g(x)=2 x+1$ in $\mathbb{Z}_{11}[x]$.
24. Prove that if F is a field, then every non constant polynomial $f(x) \in F[x]$ can be factored in $F[x]$ into a product of irreducible polynomials, the irreducible polynomials being unique except for order and for unit factors in F.

$$
(7 \times 2=14 \text { Weightage })
$$

Part C

Answer any 2 Questions.
Each question carries 4 weightage.
25. Show that the set of all commutators $a b a^{-1} b^{-1}$ of a group G generates a normal subgroup C of G and G / C is abelian. Furthermore G / N is abelian if and only if $C \leq N$. Find the centre $Z\left(D_{4}\right)$ and the commutator subgroup C of the group D_{4}.
26. State and prove second isomorphism theorem. Let $\varphi: \mathbb{Z}_{12} \rightarrow \mathbb{Z}_{3}$ be a homomorphism such that $\varphi(1)=2$.
a) Find the Kernel K of φ.
b) List the cosets in \mathbb{Z}_{12} / K showing the elements in each coset.
c) Give the correspondence between \mathbb{Z}_{12} / K and \mathbb{Z}_{3} given by map ψ described in first isomorphism theorem.
27. Let P_{1} and P_{2} be Sylow p-subgroups of a finite group G. Prove that P_{1} and P_{2} are conjugate subgroups of G. Let G be a finite group and let p divides $|G|$. Prove that if G has only one proper Sylow p-subgroup, it is a normal subgroup, so G is not simple.

16 P101

28. State and prove Eisenstein's theorem. Using Eisenstein's theorem, prove that the cyclotomic polynomial $\varphi_{p}(x)=\frac{\left(x^{p}-1\right)}{(x-1)}=x^{p-1}+x^{p-2}+\cdots+x+1$ is irreducible over Q for any prime p.
($2 \times 4=8$ Weightage)
