16P101

(Pages:3)

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2016

(Regular/Supplementary/Improvement) (CUCSS-PG)

CC15P MT1 C01 – ALGEBRA-I

(Mathematics) (2015 Admission Onwards)

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer all Questions

Each question carries 1 weightage

- 1. Define an isometry of \mathbb{R}^2 and give an example for it.
- 2. Find the order of the element (3,10, 9) in $\mathbb{Z}_4 \times \mathbb{Z}_{12} \times \mathbb{Z}_{15}$.
- 3. Show that factor group of a cyclic group is cyclic.
- 4. Show that for two binary words of same length d(u, v) = wt(u v).
- 5. Show that \mathbb{Z} has no composition series.
- 6. Let X be a G-set. For $x_1, x_2 \in X$, let $x_1 \sim x_2$ if and only if there exists $g \in G$ such that $g x_1 = x_2$. Show that \sim is an equivalence relation on X.
- 7. Let *G* be a group of order p^n and let *X* be a *G*-set. Prove that $|X| \equiv |X_G| \pmod{p}$ where *p* is a prime number.
- 8. Find the conjugate classes of S_3 and write the class equation.
- 9. Find the reduced form and the inverse of the reduced form of $a^2b^{-1}b^3a^3c^{-1}c^4b^{-2}$.
- 10. Consider the evaluation homomorphism $\varphi_5: \mathbb{Q}[x] \to \mathbb{R}$. Find five elements in the kernal of φ_5 .
- 11. If F is a field and $a \neq 0$, is a zero of $f(x) = a_0 + a_1 x + \dots + a_n x^n$ in F[X]. Show that $\frac{1}{a}$ is a zero of $a_n + a_{n-1}x + \dots + a_0x^n$.
- 12. Write the element (1 + 3j)(4 + 2j k) of Q in the form $a_1 + a_2i + a_3j + a_4k$ for $a_i \in \mathbb{R}$.
- 13. Let N be an ideal of a ring R. Then prove that $\Upsilon : R \to R/N$ given by $\Upsilon(x) = x + N$ is a ring homomorphism with kernal N.
- 14. Give an example to show that factor ring of an integral domain may be a field.

 $(14 \times 1 = 14 \text{ Weightage})$

Part B

Answer **any 7** Questions.

Each question carries 2 weightage

- 15. Prove that converse of Lagrange's theorem is not true.
- 16. Find isomorphic refinements of the two series $\{0\} < \langle 18 \rangle < \langle 3 \rangle < \mathbb{Z}_{72}$ and $\{0\} < \langle 24 \rangle < \langle 12 \rangle < \mathbb{Z}_{72}$.
- 17. Show that the group $\mathbb{Z}_m \times \mathbb{Z}_n$ is isomorphic to \mathbb{Z}_{mn} if and only if *m* and *n* are relatively prime.
- 18. Prove that if *H* is a subgroup of a finite group *G*, then $(N[H]: H) \equiv (G: H) \pmod{p}.$
- 19. Find the number of orbits in {1,2,3,4,5,6,7,8} under the cyclic group < (1 3 5 6) > of S_8 .
- 20. Prove that for a prime number p, every group G of order p^2 is abelian.
- 21. Show that every group of order $(35)^3$ has a normal subgroup of order 125.
- 22. Show that the equation $x^2 = 2$ has no solution in rational numbers.
- 23. Find q(x) and r(x) where $f(x) = x^5 2x^4 + 3x 5$ and g(x) = 2x + 1 in $\mathbb{Z}_{11}[x]$.
- 24. Prove that if *F* is a field, then every non constant polynomial $f(x) \in F[x]$ can be factored in F[x] into a product of irreducible polynomials, the irreducible polynomials being unique except for order and for unit factors in *F*.

 $(7 \times 2 = 14 \text{ Weightage})$

Part C

Answer any 2 Questions.

Each question carries 4 weightage.

- 25. Show that the set of all commutators $aba^{-1}b^{-1}$ of a group *G* generates a normal subgroup *C* of *G* and *G/C* is abelian. Furthermore *G/N* is abelian if and only if
 - $C \leq N$. Find the centre $Z(D_4)$ and the commutator subgroup C of the group D_4 .
- 26. State and prove second isomorphism theorem. Let $\varphi \colon \mathbb{Z}_{12} \to \mathbb{Z}_3$ be a homomorphism such that $\varphi(1) = 2$.
 - a) Find the Kernel *K* of φ .
 - b) List the cosets in \mathbb{Z}_{12}/K showing the elements in each coset.
 - c) Give the correspondence between \mathbb{Z}_{12}/K and \mathbb{Z}_3 given by map ψ described in first isomorphism theorem.
- 27. Let P_1 and P_2 be Sylow *p*-subgroups of a finite group *G*. Prove that P_1 and P_2 are conjugate subgroups of *G*. Let *G* be a finite group and let *p* divides |G|. Prove that if *G* has only one proper Sylow *p*-subgroup, it is a normal subgroup, so *G* is not simple.

16P101

28. State and prove Eisenstein's theorem. Using Eisenstein's theorem, prove that the cyclotomic polynomial $\varphi_p(x) = \frac{(x^{p-1})}{(x-1)} = x^{p-1} + x^{p-2} + \dots + x + 1$ is irreducible over Q for any prime p.

 $(2 \times 4 = 8 \text{ Weightage})$