Name: \qquad
Reg No: \qquad
FIRST SEMESTER M.Sc. DEGREE EXTERNAL EXAMINATION FEBRUARY 2016 (2015 Admission)

CC15P ST1 C02- Analytical Tools for Statistics 1
 (STATISTICS)

Time : 3 Hrs
Maximum: 36 Weightage

Part A (Answer all questions)

Define Riemann integral of a multivariable function.

1. Let $f(x, y)= \begin{cases}\frac{x y}{x^{2}-y^{2}}, & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{cases}$

Show that this function possess partial derivatives at $(0,0)$.
2. Obtain the necessary condition for a function $f(z)$ to be analytic.
3. If f is analytic in a domain S and if $|f|$ is constant there, then show that f is constant.
4. Show that $f(z)=x-i y^{2}$ is differentiable only at $y=-\frac{1}{2}$ and $f^{\prime}(z)=1$
5. Define pole of order m of a function $f(z)$
6. What is removable singularity?
7. If $\mathcal{L}\{F(t)\}=f(s)$, then find $\left.\mathcal{L}\left\{t^{n} F(t)\right)\right\}$
8. State the maximum modulus principle.
9. Define the inverse Laplace Transform of a function
10. Define half range Fourier sine and cosine series.
11. State the convolution theorem for Fourier transforms.
(12 x 1=12 weightage)

Part B (Answer any eight questions. Weightage 2 for each question)

12. Define partial derivatives. Show that

$$
f(x, y)=\left\{\begin{array}{c}
\frac{x y}{x^{2}+y^{2}},(x, y) \neq(0,0) \\
0, \quad(x, y)=(0,0)
\end{array}\right.
$$

is not continuous at the origin and the partial derivatives of $f(x, y)$ with respect to x and y exist at the origin.
13. Discuss the maxima and minima for $f(x, y)=2 x^{4}+y^{4}-2 x^{2}-2 y^{2}$
14. State and prove Morera's theorem.
15. Show that the function $f(z)=x^{3}+3 x y^{2}+i\left(y^{3}+3 x^{2} y\right)$ is differentiable only at points that lie on the coordinate axes.
16. Show that the function $v(x, y)=\operatorname{Cos} x \cdot \operatorname{Cosh} y$ is harmonic and find the corresponding analytic function.
17. Find the Laurent series for the function $\frac{\left(z^{2}-2 z+7\right)}{(z-2)}$ in the domain $|z-1|>1$
18. Evaluate $\int_{0}^{1}\left(1+i t^{2}\right) d t$
19. Establish Jordan's lemma.
20. Show that $\int_{0}^{\infty} \frac{(\log x)^{2}}{1+x^{2}} d x=\frac{\pi^{2}}{8}$
21. Find the Laplace transform of : (i) $e^{3 x} \cos 2 x$ (ii) $\sin ^{3} 6 \mathrm{x}$
22. Fund the inverse Laplace transform of $\frac{e^{-5 s}}{(s-4)^{4}}$
23. Find the Fourier transform of

$$
f(x)= \begin{cases}x, & 0<x<1 \\ 2-x, & 1<x<2 \\ 0, & x>2\end{cases}
$$

($8 \times 2=16$ weightage)

Part C (Answer any two questions. Weightage 4 for each question)

24. State and prove Laurent series expansion
25. State and prove Cauchy Goursat theorem.
26. Solve the differential equation by the method of Laplace transform:

$$
t Y^{\prime \prime}+(1-2 t) Y^{\prime}-2 Y=0, Y(0)=1, Y^{\prime}(0)=2 .
$$

27. By Contour integration prove that:

$$
\int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x=\frac{\pi}{2}
$$

($2 \times 4=8$ weightage)

