\qquad
\qquad
FIRST SEMESTER M.Sc. DEGREE EXTERNAL EXAMINATION FEBRUARY 2016 (2015 Admission)
CC15P MT1 C02 - LINEAR ALGEBRA
(Mathematics)

Time: 3 hrs
Max. Weight: 36

PART A (Short Answer Type)
 Answer all questions.
 Each question has weightage 1.

1. Let V be a vector space over the field F. Prove that $(-c) \alpha=-c \alpha$ for $c \in F$ and $\alpha \in V$.
2. Prove that the vectors $(1,2,1)$ and $(1,0,1)$ are linearly independent in \mathcal{R}^{3}.
3. Find the dimension of the space of $3 x 3$ symmetric matrices over the field of real numbers.
4. Give two linear functionals f_{1}, f_{2} on \mathcal{R}^{2} such that $\left\{f_{1}, f_{2}\right\}$ is linearly independent.
5. Let $T: \mathcal{R}^{2} \rightarrow \mathcal{R}^{2}$ be defined by $T(x, y)=(x+2 y, 3 x-y)$. Find the matrix of T relative to the standard basis of \mathcal{R}^{2}.
6. Find the null space of the transformation defined by $T(x, y)=(x+y, x)$.
7. Find a characteristic vector of the operator $T: \mathcal{R}^{2} \rightarrow \mathcal{R}^{2}$ defined by $T(x, y)=$ $(x+y, x-y)$.
8. If T is any linear operator on V, then prove that the zero subspace invariant under T.
9. Define similar matrices.
10. Prove that similar matrices have the same characteristic polynomial.
11. If E_{1} and E_{2} are projections onto independent subspaces, then $E_{1}+E_{2}$ is a projection. True or false. Why?
12. Find a $3 x 3$ matrix for which the minimal polynomial is x^{2}.
13. If S is any subset of an inner product space V then prove that its orthogonal complement S^{\perp} is always a subspace of V.
14. With respect to the standard inner product, write an orthogonal vector of $(-2,-4,1)$ in \mathcal{R}^{3}.
($14 \times 1=14$ Weightage)

PART B (Paragraph type)

Answer any seven

Each question has weightage 2.

15. Let W be the subset of V, the vector space of all $2 x 2$ matrices over a field F, of the form $\left[\begin{array}{ll}x & y \\ z & 0\end{array}\right]$ where x, y, z are arbitrary scalars in F. Prove that W is a subspace of V and find $\operatorname{dim} W$.
16. Find the coordinates of the vector $(a, b, c) \in \mathcal{R}^{3}$ relative to the ordered basis $\{(1,0,-1),(1,1,1),(1,0,0)\}$.
17. Prove that the intersection of any collection of subspaces of a vector space V is a subspace of V.
18. Prove that a linear transformation is one-to-one if and only if its null space is zero.
19. Let $\mathfrak{B}=\{(1,1),(1,0)\}$ and $\mathfrak{B}^{\prime}=\{(0,1),(1,1)\}$ be two ordered bases of \mathcal{R}^{2}. Then find the $2 x 2$ matrix P with entries in \mathcal{R} such that $[\alpha]_{\mathfrak{B}}=P[\alpha]_{\mathcal{B}^{\prime}}$.
20. Let $p(x)$ is the minimal polynomial of a linear operator T. Show that $p(c)=0$ if and only if c is a characteristic value of T.
21. Let T be a linear operator on a vector space V and let $\alpha \in V, c \in F$ be such that $T(\alpha)=c \alpha$. Show that for any polynomial $f, f(T) \alpha=f(c) \alpha$.
22. Let W_{1}, W_{2} subspaces of a vector space V and let $V=W_{1} \oplus W_{2}$. Show that there is a projection on V with range W_{1} and null space W_{2}.
23. In an inner product space, prove that an orthogonal set of non-zero vectors is linearly independent.
24. State and prove Bessel's inequality in an inner product space.
($7 \times 2=14$ Weightage)

PART C (Essay type)
 Answer any Two

Each question has weightage 4.

25. Describe the linear algebra $L(V)$ of linear operators on a vector space V. Prove that if dimension of V is n then dimension of $L(V)$ is n^{2}.
26. Define the transpose T^{t} of a linear operator T. Prove that
(i) null space of T^{t} is the annihilator of the range of T.
(ii) $\operatorname{rank}\left(T^{t}\right)=\operatorname{rank}(T)$.
27. Let T be a linear operator on a finite-dimensional space V. Let $c_{1}, c_{2}, \ldots . c_{k}$ be the distinct characteristic values of T and W_{i} be the null space of $\left(T-c_{i} I\right)$. Prove the following are equivalent.
(i) T is diagonalizable.
(ii)The characteristic polynomial for T is $f=\left(x-c_{1}\right)^{d_{1}}\left(x-c_{2}\right)^{d_{2}} \ldots\left(x-c_{k}\right)^{d_{k}}$ and $\operatorname{dim} W_{i}=d_{i}, i=1,2, \ldots ., k$.
(iii) $\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)+\cdots+\operatorname{dim}\left(W_{k}\right)=\operatorname{dim} V$.
28. State and prove Gram-Schmidt orthogonalization process in an inner product space. Apply this process to the vectors $(1,0,1),(1,0,-1),(0,3,4)$ to obtain an orthonormal basis for \mathcal{R}^{3} with the standard inner product.

$$
\text { (2 x } 4 \text { = } 8 \text { Weightage) }
$$

