\qquad

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2016
 (Regular/Supplementary/Improvement)
 (CUCSS-PG)
 CC15P MT1 C02 - LINEAR ALGEBRA

(Mathematics)
(2015 Admission Onwards)
Time: Three Hours
Maximum: 36 Weightage

PART A
(Short Answer Type)
Answer all questions. Each question has weightage 1.

1. If V be a vector space over the field F, prove that $(-1) \alpha=-\alpha$, where $-1 \in F$ and $\alpha \in V$.
2. Write a basis of the vector space of all 3×3 diagonal matrices over the field \mathbb{R}.
3. Verify the function $T(x, y)=(x+y, 2 x+1)$ from \mathbb{R}^{2} into \mathbb{R}^{2} linear?
4. Let T be the linear operator on \mathbb{R}^{2} defined by $T(x, y)=(x-y, 2 x+y)$. What is the matrix of T relative to the standard ordered basis?
5. Give a linear functional on \mathbb{R}^{2}.
6. Define hyperspace of a vector space.
7. Define the transpose of a linear transformation.
8. Let T be the linear operator on \mathbb{R}^{2} which is represented in the standard ordered basis by the matrix $A=\left[\begin{array}{rr}0 & -2 \\ 2 & 0\end{array}\right]$. Prove that the only subspaces of \mathbb{R}^{2} which are invariant under T are \mathbb{R}^{2} and the zero subspace.
9. Show that every matrix A such that $A^{2}=A$ is similar to a diagonal matrix.
10. Prove that similar matrices have the same characteristic polynomial.
11. Let V be a vector space and (\mid) be an inner product on V. Show that if $(\alpha \mid \beta)=0$ for all $\beta \in V$, then $\alpha=0$.
12. If V is an inner product space, then prove that $\|c \alpha\|=|c|\|\alpha\|$ for any vector α in V and for any scalar c.
13. If S is any subset of an inner product space V then prove that its orthogonal complement S^{\perp} is always a subspace of V.
14. With respect to the standard inner product, write an orthogonal vector of $(-2,-4,0)$ in \mathbb{R}^{3}.

PART B
(Paragraph type)
Answer any seven

Each question has weightage 2

15. Let V be a vector space of dimension n. Prove that every subset of V containing more than n elements is linearly dependent.
16. Find the range, rank, null space, and nullity for the zero transformation and the identity transformation on a finite-dimensional space V.
17. Prove that if W_{1}, W_{2} are subspaces of a vector space V, then $W_{1}+W_{2}$ is also a subspace of V.
18. Prove that a linear transformation is one-to-one if and only if its null space is zero.
19. Let T be a linear operator on a finite dimensional vector space V. Prove that if T maps a basis of V to a basis of V then T is invertible.
20. Let $p(x)$ is the minimal polynomial of a linear operator T. Show that $p(c)=0$ if and only if c is a characteristic value of T.
21. If S is any subset of a finite-dimensional vector space V, then $\left(S^{\circ}\right)^{\circ}$ is a subspace spanned by S.
22. Let E be a projection on a vector space V and R be the range and N be the null space of E. Prove that $R \bigoplus N=V$.
23. In an inner product space, prove that an orthogonal set of non-zero vectors is linearly independent.
24. State and prove Cauchy-Schwarz inequality in an inner product space.
($7 \times 2=14$ Weightage)

PART C

(Essay type)
Answer any Two

Each question has weightage 4

25. Let V be a n-dimensional vector space over the field F, and \mathfrak{B} and \mathfrak{B}^{\prime} be two ordered bases of V. Then prove that there is a unique invertible $n \times n$ matrix P such that $(i)[\alpha]_{\mathfrak{B}}=P[\alpha]_{\mathfrak{B}^{\prime}}(i i)[\alpha]_{\mathfrak{B}^{\prime}}=P^{-1}[\alpha]_{\mathfrak{B}}$.
26. Let V be a finite dimensional vector space over the field F, and let W be a subspace of V. Prove that $\operatorname{dim} W+\operatorname{dim} W^{\circ}=\operatorname{dim} V$ and if W is a k-dimensional subspace of an n-dimensional vector space V, then W is the intersection of $(n-k)$ hyperspaces in V.
27. Let V be a finite dimensional vector space over the field F and let T be a linear operator on V. Then prove that T is triangulable if and only if the minimal polynomial for T is a product of linear polynomials over F.
28. Let W be a finite-dimensional subspace of an inner product space V and let E be the orthogonal projection of V on W. Then prove that E is an idempotent linear transformation of V onto W, W^{\perp} is the null space of E, and $V=W \oplus W^{\perp}$.
($2 \times 4=8$ Weightage)
