15P153

Name		
------	--	--

Reg. No.....

FIRST SEMESTER M.Sc. DEGREE EXTERNAL EXAMINATION FEB. 2016

(2015 Admissions)

CC15P ST1 C01 - Measure Theory and Integration

(STATISTICS)

Max. Weightage: 36

Time: 3 Hrs.

Part A (Answer *all* questions. Weightage 1 for each question)

- 1. State mean value theorem.
- 2. Define Riemann-Stieltjes integral
- 3. Define σ Field with suitable example
- 4. State Fatou's Lemma
- 5. Define integral of a measurable function.
- 6. Show that every subset of a set with measure '0' is measurable.
- 7. Define integral of a measurable function.
- 8. Define normed linear space
- 9. State Minkowski's inequality.
- 10. State Cartheodory extension theorem.
- 11. Define signed measure
- 12. State Monotone class lemma.

(12 x 1=12 weightage)

Part B

(Answer any *eight* questions. Weightage 2 for each question)

- 13. State and prove the First Mean Value Theorem.
- 14. Define uniform convergence. Test for uniform convergence of the sequence $\{f_n\}$ where

 $f_n(x) = \frac{nx}{1+n^2x^2}$ for all real x.

- 15. State and prove Weistrass theorem
- 16. State and prove Monotone Convergence Theorem.
- 17. If $\{f_n\}$ is a set of measurable function and $g = \lim_{n \to \infty} f_n$ then show that g is measurable function.
- 18. Define the integral of a measurable function. Prove or disprove | f | is a measurable implies f is measurable.
- 19. State and prove Hahn Decomposition Theorem.
- 20. Let $\{f_n\}$ be a sequence in Lp which converges almost everywhere to a measurable function f then prove that $\{f_n\}$ converges in Lp to f by stating necessary conditions.
- 21. Prove that $\int (\liminf f_n d\mu) \leq \liminf \int f_n d\mu$, where $\{f_n\}$ is a non negative measurable sequence define on (X, A)
- 22. Show that a function f is measurable if and only if its positive and negative parts are measurable functions
- 23. State and prove Fubini's Theorem
- 24. Show that the intersection of any number of σ -fields is a σ -field but union of σ -fields need not be a σ -field

(8 x 2=16 weightage)

Part C (Answer any *two* questions. Weightage 4 for each question)

- 25. (a) If $\{f_n\}$ and $\{g_n\}$ converges uniformly on a set *E*, Show that $\{a f_n + b g_n\}$ converges uniformly on *E*, where a and b are real constants
 - (b) Show that $\sum_{n=1}^{\infty} (-1)^n \frac{(x^2+n)}{n^2}$ convergence uniformly in every bounded Interval.
- 26. (a) State and prove Lebesgue Dominated Convergence Theorem. (b) If f and g are Integrable functions and α and β are real constants, show that $\int (\alpha f + \beta g) d\mu = \alpha \int f d\mu + \beta \int g d\mu$
- 27. (a) State and prove Holder's inequality and deduce Schwarz inequality from it.(b) Show that convergence in *Lp* implies convergence in measure.
- 28 State and prove Jordan decomposition theorem. If μ is a signed measure in a measurable space (X, \mathcal{B}) then show that there is a positive set A and a negative set B such that $A \cap B = \varphi$ and $X = A \cup B$

(2 x 4=8 weightage)
