\qquad
\qquad

FIRST SEMESTER M.Sc. DEGREE EXTERNAL EXAMINATION FEB. 2016

 (2015 Admissions)
CC15P ST1 C03- Analytical Tools for Statistics II (STATISTICS)

Time: 3 Hrs.
Max. Weightage: 36

Part A

(Answer all questions. Weightage 1 for each question)

1. Define Vector space and Subspaces.
2. Explain (a) Idempotent matrix (b) Nilpotent matrix.
3. Define rank of a matrix. If A and B are two matrices. Show that rank $(A B)=m i n$ $[\operatorname{rank}(\mathrm{A}), \operatorname{rank}(\mathrm{B})]$.
4. What is Basis and Dimension of a vector space ?
5. What you mean by linear transformation on Vector spaces?
6. Define g-inverse.
7. Define positive definite matrices.
8. State Rank Nullity theorem.
9. Explain Minimal Polynomial.
10. State Cayley Hamilton theorem.
11. What is Characteristic root of a matrix.
12. Define Orthogonal matrix.
$(12 \times 1=12$ Weightage $)$

Part B

(Answer any eight questions. Weightage 2 for each question)
13. Let V be a vector space over a Field K , then prove that the intersection of any two Subspaces of V are again a Subspaces of V if and only if one contains another.
14. Check for linear independence and dependence of the following set of vectors $\mathrm{V}_{1}=(2,0,1,1), \mathrm{V}_{2}=(1,4,1,1)$ and $\mathrm{V}_{3}=(1,2,2,2)$
15. Describe Inner Product space. Give an example.
16. Show that geometric multiplicity cannot exceed algebraic multiplicity.
17. Find Eigen values of $\left[\begin{array}{lll}2 & 1 & 1 \\ 2 & 3 & 3 \\ 1 & 1 & 2\end{array}\right]$.
18. Show that similar matrices have same minimal polynomial.
19. Describe the method of finding inverse.
20. Let V be a vector space with dimension n . Show that any linear independent set in V can be extended to a basis of V .
21. Write a short note on Gram-Schmidt process.
22. Find inverse of $\left[\begin{array}{ccc}1 & 2 & 4 \\ -1 & 0 & 3 \\ 2 & 4 & 8\end{array}\right]$
23. Define the Rank and Signature of a real quadratic forms.
24. Show that Hermitian matrix A is positive definite if and only if each of the principal minors of A is positive.

$$
(8 \times 2=16 \text { Weightage })
$$

Part C

(Answer any two questions. Weightage 4 for each question)

25. a) Define Moore Penrose inverse of a matrix. Prove that it is unique.
b) Define geometric and algebraic multiplicity. Find geometric and algebraic multiplicity of the matrix $\mathrm{A}=\left[\begin{array}{ll}2 & 2 \\ 2 & 1\end{array}\right]$.
26. a) Show that a set of non null vectors $\alpha_{1}, \alpha_{2}, \ldots \alpha_{\mathrm{n}}$ orthogonal in pairs is necessarily independent.
b) Find Moore Penrose g-inverse of $\left[\begin{array}{lll}2 & 2 & 3 \\ 2 & 3 & 1\end{array}\right]$.
27. a) Define quadratic forms, Illustrate different forms of them.
b) Classify the quadratic form $12 x^{2}+2 y^{2}+3 z^{2}-2 y x-8-y z-6 x y$
28. a) Let $f=R^{3} \rightarrow R^{2}$ be defined by $f(x, y, z)=(z+x, 2 x+y)$. Show that f is linear mapping.
b) Show that characteristic roots of a skew symmetric matrix are either zero or a pure imaginary number.
($2 \times 4=8$ Weightage)
