\qquad
\qquad

FIRST SEMESTER M.Sc. DEGREE EXTERNAL EXAMINATION FEBRUARY 2016

(2015 Admission)

CC15P MT1 C04-ODE and Calculus of Variations

(Mathematics)
Time: 3hrs
Max. 36 Weightage

Part A
Answer All Questions
Each Question carries 1 weightage

1. Locate and classify the singular points on the X axis of the differential equations $x^{3}(x-1) y^{\prime \prime}-2(x-1) y^{\prime}+3 x y=0$.
2. Find indicial equation and its roots for $x^{3} y^{\prime \prime}+(\cos 2 x-1) y^{\prime}+2 x y=0$.
3. Define Hyper geometric series $F(a, b, c, x)$ and show that $e^{x}=\lim _{b \rightarrow \infty} F\left(a, b, a, \frac{x}{b}\right)$.
4. Express a third degree polynomial in terms of Legendre polynomials.
5. Define gamma function and prove that $\Gamma(p+1)=p \Gamma p$.
6. Show that $\frac{d\left(J_{0}(x)\right)}{d x}=-J_{1}(x)$.
7. Describe the phase portrait of $\frac{d x}{d t}=-x$

$$
\frac{d y}{d t}=-y
$$

8. Determine whether the function is positive definite, negative definite or neither:

$$
f(x, y)=-x^{2}-4 x y-5 y^{2}
$$

9. State Sturm comparison theorem.
10. Show that $f(x, y)=y^{\frac{1}{2}}$ does not satisfy Lipschitz condition on the rectangle $|x| \leq 1$ and $0 \leq|y| \leq 1$
11. Find the normal form of Bessel equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0$.
12. Find the extremal for the integral $\int_{x_{1}}^{x_{2}} f\left(x, y, y^{\prime}\right) d x$ if the integrand is $\frac{\sqrt{\left.1+\left(y^{\prime}\right)^{2}\right)}}{y}$.
13. Find the general solution of $\frac{d x}{d t}=2 x$

$$
\frac{d y}{d t}=3 y
$$

14. State Picard's theorem.
($14 \times 1=14$ Weightage)

Part B

Answer any 7 questions
Each question carries 2 weightage
15. Solve $y^{\prime}=1+y^{2}, y(0)=0$ in two ways and show that $\tan x=x+\frac{x^{3}}{3}+\frac{2}{15} x^{5}+\cdots$
16. Find a Frobenius series solution of the Bessel's equation of order zero.
17. Find the first three terms of Legendre series for the function $f(x)=\left\{\begin{array}{lc}0 & \text { if }-1 \leq x<0 \\ x & \text { if } 0 \leq x \leq 1\end{array}\right.$
18. State Bessel expansion theorem and find the Bessel series for the function $f(x)=1$.
19. Find the general solution of $\frac{d x}{d t}=4 x-2 y$

$$
\frac{d y}{d t}=5 x+2 y
$$

20. Define Liapunov function for an autonomous system and show that if there exist a Liapunov function $E(x, y)$ for the system then the critical point $(0,0)$ is stable.
21. Determine the nature and stability properties of the critical point $(0,0)$ for $\frac{d x}{d t}=-x-2 y$

$$
\frac{d y}{d t}=4 x-5 y
$$

22. If $q(x)<0$ and $u(x)$ is a non-trivial solution of $u^{\prime \prime}+q(x) u=0$ then Prove that $u(x)$ has at most one zero.
23. Find the exact solution of the initial value problem $y^{\prime}=2 x(1+y), y(0)=0$. Starting with $y_{0}(x)=$ 0 , calculate $y_{1}(x), y_{2}(x)$ and $y_{3}(x)$ using Picard's method.
24. Find the curve of fixed length L that joins $(0,0)$ and $(1,0)$ which lies above the X axis and encloses maximum area between itself and X axis.
($7 \times 2=14$ Weightage)

Part C
Answer any 2 questions
Each question carries 4 weightage
25. State and prove orthogonalityproperty of Legendre polynomials.
26. Find the two independent Frobenius series solution for $x y^{\prime \prime}+2 y^{\prime}+x y=0$.
27. For the non-linear system $\frac{d x}{d t}=y\left(x^{2}+1\right)$

$$
\frac{d y}{d t}=-x\left(x^{2}+1\right)
$$

a. Find the critical point.
b. Find the differential equation of the paths.
c. Solve this equation to find the paths.
d. Sketch a few paths and show the direction of increasing t.
28. State and prove Sturm separation theorem and show that the zeros of the function $a \sin x+b \cos x$ and $c \sin x+d \cos x$ are distinct and occur alternately whenever $a d-b c \neq 0$.
($2 \times 4=8$ Weightage)

