\qquad

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2016

(Regular/Supplementary/Improvement)
(CUCSS-PG)
CC15P MT1 C04 - ODE AND CALCULUS OF VARIATIONS
(Mathematics)
(2015 Admission Onwards)
Time: Three Hours
Maximum: 36 Weightage

Part A

Answer All Questions
Each Question carries 1 weightage

1. Determine the nature of the point $x=0$ for the equation $x y^{\prime \prime}+(\sin x) y=0$.
2. Find the indicial equation and its roots for $4 x^{2} y^{\prime \prime}+\left(2 x^{4}-5 x\right) y^{\prime}+\left(3 x^{2}+2\right) y=0$.
3. Define Hypergeometric series $F(a, b, c, x)$ and show that $(1+x)^{p}=F(-p, b, b,-x)$.
4. What is Rodrigues formula and using the formula find the value of $p_{2}(x)$.
5. Define gamma function and show that $\Gamma(p+1)=p$!.
6. Show that $\frac{d}{d x}\left(x J_{1}(x)\right)=x J_{0}(x)$
7. Describe the phase portrait of $\left\{\begin{array}{l}\frac{d x}{d t}=x \\ \frac{d y}{d t}=0\end{array}\right.$
8. Determine whether the function $x^{2}-x y-y^{2}$ is positive definite, negative definite or neither.
9. State Sturm separation theorem.
10. Show that $f(x, y)=x y$ satisfy Lipschitz condition on any rectangle $a \leq x \leq b$ and $c \leq y \leq d$
11. Find the normal form of Bessel equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0$.
12. State Picard's theorem.
13. When the integrand in $I=\int_{x_{1}}^{x_{2}} f\left(x, y, y^{\prime}\right) d x$ is of the form $a(x)\left(y^{\prime}\right)^{2}+2 b(x) y y^{\prime}+c(x) y^{2}$, show that the Euler's equation is a second order linear differential equation.
14. Find the general solution of $\left\{\begin{array}{l}\frac{d x}{d t}=x \\ \frac{d y}{d t}=y\end{array}\right.$
($14 \times 1=14$ Weightage)

Part B

Answer any 7 questions
Each question carries 2 weightage
15. Express $\sin ^{-1} x$ in the form of a power series by solving $y^{\prime}=\left(1-x^{2}\right)^{-\frac{1}{2}}$ in two ways.
16. Find the general solution of $y^{\prime \prime}+x y^{\prime}+y=0$ in the form $y=a_{0} y_{1}(x)+a_{1} y_{2}(x)$ where $y_{1}(x), y_{2}(x)$ are power series.
17. Explain least square approximation.
18. State Bessel expansion theorem and find the Bessel series for $f(x)=1$.
19. Find the general solution of $\left\{\begin{array}{l}\frac{d x}{d t}=x-2 y \\ \frac{d y}{d t}=4 x+5 y\end{array}\right.$
20. Define Liapunov function $E(x, y)$ for the system $\left\{\begin{array}{l}\frac{d x}{d t}=F(x, y) \\ \frac{d y}{d t}=G(x, y)\end{array}\right.$. If the function has the additional property that $\frac{\partial E}{\partial x} F+\frac{\partial E}{\partial y} G$ is negative definite, then prove that the critical point $(0,0)$ is asymptotically stable.
21. Determine the nature and stability property of the critical point $(0,0)$ for $\left\{\begin{array}{l}\frac{d x}{d t}=-3 x+4 y \\ \frac{d y}{d t}=-2 x+3 y\end{array}\right.$
22. Let $u(x)$ be any non-trivial solution of $u^{\prime \prime}+q(x) u=0$ where $q(x)>0$ for all $x>0$. If $\int_{1}^{\infty} q(x) d x=\infty$, then prove that $u(x)$ has an infinite number of zeros on the positive x - axis.
23. Find the exact solution of the initial value problem $y^{\prime}=y^{2}, y(0)=1$. Starting with $y_{0}(x)=1$ apply Picard's method to calculate $y_{1}(x), y_{2}(x)$ and $y_{3}(x)$.
24 . Find the geodesis on the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.

Part C
 Answer any 2 questions
 Each question carries 4 weightage

25. State and prove orthogonality property of Bessel's function.
26. Find the Frobenius series solution for the equation $x^{2} y^{\prime \prime}-3 x y^{\prime}+(4 x+4) y=0$.
27. Find the general solution of $\left\{\begin{array}{l}\frac{d x}{d t}=3 x-4 y \\ \frac{d y}{d t}=x-y\end{array}\right.$
28. Derive Euler's equation for an extremal and explain the different cases.
