16P128

(Pages:4)

Name: Reg. No.....

FIRST SEMESTER M.A. DEGREE EXAMINATION, NOVEMBER 2016

(Regular/Supplementary/Improvement) (CUCSS-PG)

CC15P ECO1 C04 – QUANTITATIVE METHODS FOR ECONOMIC ANALYSIS - I

(Economics)

(2015 Admission Onwards)

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer **all** questions Each bunch of **four** questions carries weightage **1**.

- 1. A square matrix A is said to be orthogonal if: (b) $AA^T = I$. (c) $AA^T = -I$. (a) $AA^T = 0$. (d) None of these.
- 2. A diagonal matrix in which all diagonal elements are equal is called: (a) Triangular matrix. (b) Scalar matrix. (c) Unit matrix. (d) None of these.
- 3. A square matrix A is non-singular if: (c) $|A| \neq 0$. (b) |A| = 0. (d) |A| > 1. (a) |A| > 0.

4. The determinant of one lower order, obtained by deleting the row and column containing that element is called:

(a) Minor. (b) Co-factor. (c) Adjoint. (d) None of these.

- 5. The value of the determinant $\begin{vmatrix} 1 & 2 & 4 \\ 3 & 5 & 7 \\ 2 & 4 & 8 \end{vmatrix}$ is: (a) 0. (b) 1. (c) -1. (d) None of these.
- 6. The rank of the matrix $\begin{pmatrix} 3 & 2 \\ 6 & 4 \end{pmatrix}$ is: (c) 2. (b) 1. (d) None of these. (a) 0.

7. For the demand function $x = \frac{27}{p^3}$, the elasticity of demand is: (c) 5 units. (d) 6 units. (a) 3 units. (b) 4 units.

- 8. $\frac{d(e^{-3x})}{dx}$ is (a) e^{-3x} . (b) $3e^{-x}$. (c) $-e^{-3x}$. (d) $-3e^{-3x}$.
- 9. Which of the following approximates the marginal impact on the objective function caused by a small change in the constant of the constraint:

(a) the Lagrange multiplier. (b) the Jacobian. (c) the Hessian. (d) the determinant.

- 10. The point of intersection of demand and supply curves is known as: (a)Break-even point. (b) Equilibrium point. (c) Isoquants. (d) None of these.
- 11. $\int_0^{\frac{\pi}{2}} (1 + \cos x) dx$ is equal to : (a) $1 + \pi$. (b) $\frac{\pi + 2}{2}$. (c) $\frac{\pi - 2}{2}$. (d) None of these.
- 12. The probability of the intersection of two mutually exclusive events is always: (a) ∞ (b) 0 (c) 1 (d) None of these.

 $(12 \times \frac{1}{4} = 3 \text{ weightage})$

Part B(Very Short Answer Questions)

Answer any **five** questions. Each question carries a weightage of **1**.

- 13. Define inverse of a matrix.
- 14. The amount of fertilizer applied (x) and yield per plot (y) of a crop are related by an equation $y = 20.38 + 2.5x 0.125x^2$. Find the quantity of fertilizer to be used to get maximum yield?

15. Find the total revenue function given $MR = 84 - 4Q - Q^2$.

- 16. State the classical definition of probability.
- 17. Two unbiased dice are thrown. Find the probability that the product of the numbers coming up is 12.
- 18. What are Isoquants?
- 19. Define conditional probability and independence.
- 20. If P(A) = 0.30, P(B) = 0.78 and P(AB) = 0.16, then find $P(AB^c)$.

 $(5 \times 1 = 5 \text{ weightage})$

Part C (Short Answer Questions)

Answer any **eight** questions. Each question carries a weightage of 2.

21. A random variable X has the following probability function

 $f(x) = \begin{cases} k, & \text{if } x = 0\\ 2k, & \text{if } x = 1\\ 3k, & \text{if } x = 2\\ 0, & \text{Otherwise} \end{cases}$ Find P(0 < X < 2).

22. What is Bayes theorem?

- 23. If P(A)=0.4, P(B)=0.3, P(AB)=0.2 find the probability of:
 - (i) At least one of the event occurs.
 - (ii) Exactly one of the event occurs.
- 24. Write short notes on:(i) Average Cost.(ii) Marginal Revenue.(iii) Marginal Cost.
- 25. If A and B are ant two events (subset of sample space S) are not disjoint, then prove that $P(A \cup B) = P(A) + P(B) P(A \cap B)$.

26. If
$$y = \sqrt{\frac{1-x}{1+x}}$$
, find $\frac{dy}{dx}$.

- 27. Solve the system of equations by Crammer's rule. x - 2y + 3z = 1 3x - y + 4z = 32y + y - 2z = -1.
- 28. Find the marginal and the average function of the total function $TC = 35 + 5Q 2Q^2 + 2Q^3$ at Q = 3.
- 29. A random variable X has a probability density function $f(x) = \lambda e^{-\lambda x}$; x > 0, $\lambda > 0$. Find the first two raw moments. Also obtain mean and variance.
- 30. Let A and B be two events such that, $P(A \cup B) = 0.8$, P(A) = 0.4 and $P(A \cap B) = 0.3$, then $P(A \cap B^c)$
- 31. Evaluate $\int_0^\infty x^2 e^{-2x} dx$.

 $(8 \times 2 = 16 \text{ weightage})$

Part D (Essay Questions)

Answer any **three** questions. Each question carries a weightage of **4**.

32. If
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & 1 \end{pmatrix}$$
. Determine the determinant of A and the characteristic polynomial of A .

33. Find the characteristic equation and characteristic roots of the matrix:

$$\left(\begin{array}{rrrr} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{array}\right).$$

- 34. Find the adjoint of the matrix and verify that A(AdjA) = |A|I if $A = \begin{pmatrix} 1 & 0 & -1 \\ 3 & 4 & 5 \\ 0 & -6 & -7 \end{pmatrix}$.
- 35. A firm has the following total cost and demand functions: $C = \frac{1}{3}Q^3 7Q^2 + 111Q + 50$ and Q = 100 p. Find profit maximizing level of output; also find profit at this level of output.
- 36. Let the revenue function be given by $R = 14x x^2$ and the cost function $C = x(x^2 2)$. Find the profit maximizing output and maximum profit.

 $(3 \times 4 = 12 \text{ weightage})$
