\qquad

Part A
Answer all questions
Each bunch of four questions carries weightage 1.

1. A square matrix A is said to be orthogonal if:
(a) $A A^{T}=0$.
(b) $A A^{T}=I$.
(c) $A A^{T}=-I$.
(d) None of these.
2. A diagonal matrix in which all diagonal elements are equal is called:
(a) Triangular matrix.
(b) Scalar matrix.
(c) Unit matrix.
(d) None of these.
3. A square matrix A is non-singular if:
(a) $|A|>0$.
(b) $|A|=0$.
(c) $|A| \neq 0$.
(d) $|A|>1$.
4. The determinant of one lower order, obtained by deleting the row and column containing that element is called:
(a) Minor.
(b) Co-factor.
(c) Adjoint.
(d) None of these.
5. The value of the determinant $\left|\begin{array}{lll}1 & 2 & 4 \\ 3 & 5 & 7 \\ 2 & 4 & 8\end{array}\right|$ is:
(a) 0 .
(b) 1 .
(c) -1 .
(d) None of these.
6. The rank of the matrix $\left(\begin{array}{ll}3 & 2 \\ 6 & 4\end{array}\right)$ is:
(a) 0 .
(b) 1 .
(c) 2 .
(d) None of these.
7. For the demand function $x=\frac{27}{p^{3}}$, the elasticity of demand is:
(a) 3 units.
(b) 4 units.
(c) 5 units.
(d) 6 units.
8. $\frac{d\left(e^{-3 x}\right)}{d x}$ is
(a) $e^{-3 x}$.
(b) $3 e^{-x}$.
(c) $-e^{-3 x}$.
(d) $-3 e^{-3 x}$.
9. Which of the following approximates the marginal impact on the objective function caused by a small change in the constant of the constraint:
(a) the Lagrange multiplier
(b) the Jacobian.
(c) the Hessian.
(d) the determinant.
10. The point of intersection of demand and supply curves is known as:
(a)Break-even point. (b) Equilibrium point. (c) Isoquants. (d) None of these.
11. $\int_{0}^{\frac{\pi}{2}}(1+\cos x) d x$ is equal to :
(a) $1+\pi$.
(b) $\frac{\pi+2}{2}$.
(c) $\frac{\pi-2}{2}$.
(d) None of these.
12. The probability of the intersection of two mutually exclusive events is always:
(a) ∞
(b) 0
(c) 1
(d) None of these.
($12 \times \frac{1}{4}=3$ weightage)

Part B(Very Short Answer Questions)

Answer any five questions.
Each question carries a weightage of 1.
13. Define inverse of a matrix.
14. The amount of fertilizer applied (x) and yield per plot (y) of a crop are related by an equation $y=20.38+2.5 x-0.125 x^{2}$. Find the quantity of fertilizer to be used to get maximum yield?
15. Find the total revenue function given $M R=84-4 Q-Q^{2}$.
16. State the classical definition of probability.
17. Two unbiased dice are thrown. Find the probability that the product of the numbers coming up is 12 .
18. What are Isoquants?
19. Define conditional probability and independence.
20. If $P(A)=0.30, P(B)=0.78$ and $P(A B)=0.16$, then find $P\left(A B^{c}\right)$.

$$
(5 \times 1=5 \text { weightage })
$$

Part C (Short Answer Questions)

Answer any eight questions.
Each question carries a weightage of $\mathfrak{2}$.
21. A random variable X has the following probability function $f(x)= \begin{cases}k, & \text { if } x=0 \\ 2 k, & \text { if } x=1 \\ 3 k, & \text { if } x=2 \\ 0, & \text { Otherwise }\end{cases}$
Find $P(0<X<2)$.
22. What is Bayes theorem?
23. If $\mathrm{P}(\mathrm{A})=0.4, \mathrm{P}(\mathrm{B})=0.3, \mathrm{P}(\mathrm{AB})=0.2$ find the probability of:
(i) At least one of the event occurs.
(ii) Exactly one of the event occurs.
24. Write short notes on:
(i) Average Cost.
(ii) Marginal Revenue.
(iii) Marginal Cost.
25. If A and B are ant two events (subset of sample space S) are not disjoint, then prove that $P(A \cup B)=P(A)+P(B)-P(A \cap B)$.
26. If $y=\sqrt{\frac{1-x}{1+x}}$, find $\frac{d y}{d x}$.
27. Solve the system of equations by Crammer's rule.
$x-2 y+3 z=1$
$3 x-y+4 z=3$
$2 y+y-2 z=-1$.
28. Find the marginal and the average function of the total function $T C=35+5 Q-2 Q^{2}+2 Q^{3}$ at $Q=3$.
29. A random variable X has a probability density function $f(x)=\lambda e^{-\lambda x} ; x>0, \lambda>0$. Find the first two raw moments. Also obtain mean and variance.
30. Let A and B be two events such that, $P(A \cup B)=0.8, P(A)=0.4$ and $P(A \cap B)=0.3$, then $P\left(A \cap B^{c}\right)$
31. Evaluate $\int_{0}^{\infty} x^{2} e^{-2 x} d x$.
$(8 \times 2=16$ weightage $)$

Part D (Essay Questions)

Answer any three questions.
Each question carries a weightage of 4.
32. If $A=\left(\begin{array}{ccc}1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & 1\end{array}\right)$. Determine the determinant of A and the characteristic polynomial of A.
33. Find the characteristic equation and characteristic roots of the matrix:

$$
\left(\begin{array}{ccc}
8 & -6 & 2 \\
-6 & 7 & -4 \\
2 & -4 & 3
\end{array}\right)
$$

34. Find the adjoint of the matrix and verify that $A(\operatorname{Adj} A)=|A| I$ if $A=\left(\begin{array}{ccc}1 & 0 & -1 \\ 3 & 4 & 5 \\ 0 & -6 & -7\end{array}\right)$.
35. A firm has the following total cost and demand functions: $C=\frac{1}{3} Q^{3}-7 Q^{2}+111 Q+50$ and $Q=100-p$. Find profit maximizing level of output; also find profit at this level of output.
36. Let the revenue function be given by $R=14 x-x^{2}$ and the cost function $C=x\left(x^{2}-2\right)$. Find the profit maximizing output and maximum profit.

$$
(3 \times 4=12 \text { weightage })
$$

