15P156

Name	•
Reg. No	

Maximum Weightage: 36

FIRST SEMESTER M.Sc. DEGREE EXTERNAL EXAMINATION FEB. 2016

(2015 Admissions)

CC15P ST1 C04: Regression and Linear programming

(STATISTICS)

Time: 3 hrs.

Part A

(Answer all questions. Weightage 1 for each question)

- 1. Define simple linear regression model and state least square estimates of the coefficients involved.
- 2. Define Residual and coefficient of determination R^2 .
- 3. Explain Generalised linear model.
- 4. Define multiple linear regression model. State basic assumptions.
- 5. What is link function and linear predictors in Generalised linear model.
- 6. Define orthogonal polynomial.
- 7. Define LPP, feasible solution and basic feasible solution of LPP.
- 8. Compute the dual of the following problem. Maximize $Z = 3x_1+2x_2+3x_3$ subject to the constrains $-2x_1+x_2-x_3 \le 4$, $2x_1+x_2+x_3 \le 7$, $x_1+x_2-x_3 \le 5$; and $x_1, x_2, x_3 \ge 0$
- 9. Explain assignment problem.
- 10. Explain Vogel's approximation method for finding initial solution of a transportation problem .
- 11. Discuss the role of sensitivity analysis in linear programming problem.
- 12. Explain Dominance property in game theory.

(12 x 1=12 weightage)

Part B

(Answer any *eight* questions. Weightage 2 for each question)

- 13. Define logistic regression model. Explain the parameter estimation in a logistic regression model.
- 14. Explain different methods for scaling residuals.
- 15. Develop confidence interval for the parameter slope for a simple linear regression model
- 16. Define polynomial regression model. Explain important consideration that arises when fitting a polynomial in one variable.
- 17. Explain residual plots and indicate its use in respect of
 - a) Normality assumption. b) Constant variance.
- 18. Explain Poisson regression models.
- 19. Discuss LPP with unrestricted variables and explain the simplex algorithm for solving LPP.
- 20. Explain how the dual and primal are related. Show that dual of the dual is primal..

21. Solve following LPP

Max $Z = 4x_1+3x_2$ subject to $x_1+x_2 \le 50$, $x_1+2x_2 \ge 80$, $3x_1+2x_2 \ge 140$ $x_1, x_2 \ge 0$. Obtain the variation in constant b_i (i =1,2,3) which are permitted without changing the optimal solution.

- 22. Explain (i) plot of residual against the regression (ii) partial residual plot
- 23. Using Big-M method solve following LPP $\max Z=3x_1+2x_2 \text{ subject to } 2x_1+x_2 \leq 2 \text{ , } 3x_1+4x_2 \geq 12 \text{ , } x_1,x_2 \geq 0$
- 24. Solve the following 2 x 3 game graphically

Player B

Player A	1	3	11
	8	5	2

(8 x 2=16 weightage)

Part C

(Answer any *two* questions. Weightage 4 for each question)

- 25. For the linear model $Y_1 = 2\beta_1 + 3\beta_2 + e_1$, $Y_2 = 3\beta_1 + 4\beta_2 + e_2$, $Y_3 = 4\beta_1 + 5\beta_2 + e_3$
 - (i)find all estimable functions and their best estimate
 - (ii)check whether $\beta = |\beta_1 \beta_2|$ estimable
- 26. Write short note on
 - i. Model adequacy checking
 - ii. Lack of fit of the regression model
 - iii. Generalized least squares
 - iv. PRESS statistics
- 27. Use revised simplex method to solve the LPP
- Max Z= 3x₁+2x₂+5X₃ subject to the constraints x₁+2x₂+x₃≤430, 3x₁+2x₃≤460, x₁,x₂,x₃≥0
 28. A steal company has 3 furnaces and 5 rolling mills. The transportation cost for shipping steal from furnaces to rolling mill in rupees are given in the following table

	M_1	M ₂	M ₃	M4	M ₅	supply
F ₁	4	2	3	2	6	8
F ₂	6	4	5	2	1	12
F ₃	6	5	4	7	7	14
Demand	4	4	6	8	8	

Find optimum shipping schedule.

(2 x 4=8 weightage)
