1		D1	10
1	1	PI	hZ

(Pages:3)

Name: Reg. No.....

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2017

(Regular/Supplementary/Improvement)

(CUCSS-PG)

CC15P ST1 C05 DISTRIBUTION THEORY

(Statistics)

(2015 Admission Onwards)

Time: Three Hours

Maximum: 36 Weightage

PART A

Answer all questions. Weightage 1 for each question.

- 1. For any integer valued random variable X. Show that $\sum_{n=0}^{\infty} s^n P(X \le n) = \frac{P(s)}{1-s}$ where P(s) is the probability generating function of X.
- 2. Show that a continuous non-negative random variable X follows the exponential distribution if and only if the relationship P(X > t + s|X > t) = P(X > s) holds for all real t, $s \ge 0$.
- 3. State recurrence relation for cumulants of power series distribution.
- 4. Let (X,Y) have the joint probability density function $f(x,y) = \begin{cases} \frac{1}{4} & \text{for } |x|, |y| \leq 1 \\ 0 & \text{elsewhere} \end{cases}$
- 5. If and X and Y are independent binomial random variable such that $X \sim B(m, p)$, $Y \sim B(n, p)$. Show that X/(X + Y) is hyper geometric.
- 6. Given f(x, y) = 2, 0 < x < y < 1, Evaluate the conditional expectation E(Y/X)
- 7. Let X have a standard Cauchy distribution. Find the probability density function of X². Identify its distribution.
- 8. If X_1 , X_2 ,..., X_n are i.i.d r.v's having exponential distribution with pdf $f(x) = \theta e^{-\theta x}$, x > 0 and $\theta > 0$. Obtain the distribution of $X_{(n)} = \min(X_1, X_2, ..., X_n)$.
- 9. Express the distribution function of B(n, p) variable in the form of an incomplete beta integral.
- 10. Find the characteristic function of Laplace distribution and obtain the cumulants.
- 11. If X and Y are independent Cauchy random variables with X_k distributed $C(\mu_k, \theta_k)$, k = 1,2. Show that X + Y is $C(\mu_1 + \mu_2, \theta_1 + \theta_2)$ random variables.
- 12. If X and Y are independent and identically distributed geometric random variables, Find the distribution of Max(X,Y)

 $(12 \times 1=12 \text{ weightage})$

Turn over

PART B

Answer any eight questions. Weightage 2 for each question.

- 13. Define the Hyper geometric distribution. Show that under conditions the hypergeometric distribution tends to the binomial distribution.
- 14. Let X_i follows gamma density with with parameters η_i and λ for i=1,2. Assume that X_1 and X_2 are independent. Find the joint distribution $Y_1=X_1+X_2$ and $Y_1=\frac{X_1}{X_2}$.
- 15. Let (X,Y) be a bivariate normal random variables with parameters $\mu_1, \mu_2, \sigma_1^2, \sigma_2^2$ and ρ . Let $U = aX + b, a \neq 0$, and V = cY + d, $c \neq 0$. Find the joint distribution of (U,V).
- 16. Define multinomial distribution and obtain it's characteristic function. If $(X_1, X_2, ..., X_{k-1})$ is distributed as multinomial, Show that the correlation coefficient between X_i and X_i is negative.
- 17. Let $(X_1, X_2, ..., X_n)$ be independent and identically distributed $N(\mu, \sigma^2)$ random variables. Show that \overline{X} , and $(X_1 \overline{X}, X_2 \overline{X}, ..., X_n \overline{X})$ are independent.
- 18. Define Pearsonian family of distributions. Show that gamma and beta distributions are members of this family.
- 19. For the Pareto distribution specified by $f(x) = \begin{cases} \frac{\beta \alpha^{\beta}}{x^{\beta+1}} & \text{if } x \geq \alpha, \text{ Show that moment of order n} \\ 0 & \text{if } x < \alpha \end{cases}$ exists only if $n < \beta$. Justify the use of Pareto model as a suitable model in the study of skewed data such as, the distribution of income.
- 20. If $\mathbf{X} = (X_1, X_2, ..., X_p)$ is distributed is distributed as multivariate normal $N(\mu, \Sigma)$, Derive the distribution of $Y = \mathbf{C}\mathbf{X}$, where \mathbf{C} non-singular.
- 21. If $X \sim F(m, n)$, Show that $Y = \frac{1}{1 + (\frac{m}{n})X}$ follows $B(\frac{n}{2}, \frac{m}{2})$.
- 22. Define the log normal distribution. Also determine mode and median of the distribution.
- 23. Let $(X_1, X_2, ..., X_n)$ be i.i.d with PDF $(y) = \begin{cases} y^{\alpha}, \text{ if } 0 < y < 1 \\ 0, \text{ otherwise} \end{cases}$, $\alpha > 0$. Show that $\{X_{(i)} | X_{(n)}, i = 1, 2, ..., (n-1)\}$ and $X_{(n)}$ are independent.
- 24. If X_1 and X_2 are independent $N(\mu_1, \sigma^2)$ and $N(\mu_2, \sigma^2)$ r.v's. Show that $X_1 X_2$ and $X_1 + X_2$ are independent.

(8 x 2=16 weightage)

PART C

Answer any two questions. Weightage 4 for each question.

25. In sampling from normal population, show that the sample mean \overline{X} and sample variance S^2 are independently distributed.

26. (a). State Chebyche'v inequality. If X be distributed with pdf f(x) = 1, $0 \le x \le 1$ prove that

$$P\left(\left|X - \frac{1}{2}\right| < 2\sqrt{\frac{1}{2}}\right) \ge \frac{3}{4}$$

- (b). A random sample of size n is taken from a population with distribution $f(x) = \begin{cases} e^{-x}, & \text{if } x \geq 0 \\ 0, & \text{elsewhere} \end{cases}$ Find the probability density function of the range.
- 27. (a). Obtain the characteristic function of the multivariate normal distribution and establish the reproductive property.
 - (b). If $X_1, X_2, ..., X_n$ are i.i.d random variables following $N(\mu, \sigma^2)$. Obtain the distribution of $L = \sum_{i=1}^n l_i X_i$ where l_i 's are constants. What can you say about independence of linear forms?
- 28. Define Non central Chi-square distribution and derive its probability density function. Also find the expression for the mean and variance.

(2 x 4=8 weightage)
