-16	page 1	E 4	0	1
-	1	PΙ	ш	1

(Pages:2) dimension in, then prove that

Name:

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2017

(Regular/Supplementary/Improvement)

(CUCSS-PG)

CC15P MT1C02/ CC17P MT1C02 – LINEAR ALGEBRA

(Mathematics)

(2015 Admission Onwards)

Time: Three Hours

Maximum:36 Weightage

The fie A PART - A linear

Answer all questions. Each question carries 1 weightage

- 1. Let V be a vector space over a field F and $0 \in F$. Prove that if $c \cdot v = 0$, where $v \in V$ and $c \in F$, then either c = 0 or v = 0.
- 2. Let V be the vector space of all real valued functions on \mathbb{R} . Verify whether $W = \{f \in V: f(x^2) = (f(x))^2\}$ is a subspace of V.
- 3. Find the dimension of the space of all upper triangular matrices of order 3×3 over \mathbb{R} .
- 4. Find the co-ordinate matrix of the vector (1,0,1) in the basis of \mathbb{C}^3 consisting of the vectors (2i,1,0),(2,-1,1),(0,1+i,1-i) in that order.
- 5. Verify whether $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(x,y) = (x^2,y)$ is a linear transformation.
- 6. Find the null space of linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x,y) = (2x 3y, 0).
- 7. Write any nonzero linear functional on the space of all $n \times n$ matrices over the field \mathbb{R} .
- 8. Let $W = \text{span}\{(1,0,1),(1,1,0)\}$. Find a nonzero linear functional in W° .
- 9. Find the characteristic values of $\begin{bmatrix} 3 & 4 \\ 3 & -1 \end{bmatrix}$.
- 10. Let W span $\{(1,2,1)\}$ in \mathbb{R}^3 and $T:\mathbb{R}^3\to\mathbb{R}^3$ be defined by T(x,y,z)=(x+y,3y,y+z). Verify whether W is an invariant subspace of T.
- 11. Let $W_1 = \text{span}\{(1,0,0),(0,1,1)\}$ and $W_2 = \text{span}\{(2,1,1)\}$. Verify whether $W_1 + W_2$ is a direct sum
- 12. Verify whether $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x, y) = (2x + y, 0) is a projection.
- 13. Write any vector in the orthogonal complement of $W = \{(x, 2x) : x \in \mathbb{R} \}$
- 14. Prove that if innerproduct $(\propto |\beta) = 0$ for all β , then $\propto = 0$.

(3, 0, 4), explain this method to the vectors (3, 0, 4),

PART-B

Answer any seven questions. Each question carries 2 weightage.

15. Let W_1 and W_2 are subspaces of a vectospace V, then Prove that $W_1 \cup W_2$ is also a subspace if and only if one of the subspaces W_i is contained in the other.

- 16. Let V be a finite dimensional vector space with dimension n, then prove that any subset of V which contains more than n vectors is linearly dependent.
- 17. Find the matrix of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(x,y,z) = (x-y,y,\ x-z)$ with respect to the ordered basis $\mathfrak{B} = \{(1,0,1),(1,1,1),(2,0,1)\}$.
- 18. Let f be a nonzero linear functional on a vector space V, then prove that every hyperspace in V is the null space of a nonzero linear functional on V.
- 19. Let V be a vector space over the field F and let T be a linear transformation from V into V. Prove that the following are equivalent $\frac{docal}{docal}$ and $\frac{docal}{docal}$ and $\frac{docal}{docal}$ are $\frac{docal}{docal}$ and $\frac{docal}{docal}$ and $\frac{docal}{docal}$ are $\frac{doc$
 - (a) The intersection of the range of T and the nullspace of T is the zero subspace of V.
 - (b) If $T(T\alpha) = 0$, then $T\alpha = 0$.
- 20. Let T be a linear transformation from V into W. Prove that T is nonsingular if and only if T carries each linearly independent subset of V onto a linearly independent subset of W.
- 21. Prove that similar matrices have the same characteristic polynomial.
- 22. Let V and W be finite dimensional vector spaces over the field F and let T be a linear transformation. Prove that (1) nullspace of T^t is the annihilator of the range of T.

 (2) $\operatorname{rank}(T^t) = \operatorname{rank}(T)$.
- 23. Let W be a finite dimensional subspace of an innerproduct space V and E be the orthogonal projection of V onto W. Prove that (1) E is an idempotent linear transformation of V onto W (2) W^{\perp} is the nullspace of E.
- 24. Prove that the set of orthogonal vectors are linearly independent. (11) has a set of orthogonal vectors are linearly independent.

to asulaw site (7×2=14 weightage)

PART-C

Answer any two questions. Each question carries 4 weightage.

- 25. If W_1 and W_2 are finite dimensional subspaces of a vector space V, then prove that $\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) \dim(W_1 \cap W_2)$.
- 26. If V is a finite dimensional vector space over a field F with dimension n, then prove that $\dim L(V,V) = n^2$.
- 27. State and prove Cayley Hamilton theorem.
- 28. Explain Gram-Schmidt orthogonalization process and find an orthonormal basis for \mathbb{R}^3 with standard inner product by applying this method to the vectors (3, 0, 4), (-1, 0, 7), (2, 9, 11).

 $2\times4=8$ weightage)
