Name:	 							•
Reg.No:	 							

(CUCSS-PG)

eming louisails of mad CC17P MT1 C04 - NUMBER THEORY (Mathematics)

(Regular - 2017 Admissions)

Time: Three Hours

Maximum: 36 weightage

Part A

Answer all questions. Each carries 1 weightage

- 1. Find all integers such that $\phi(n) = \phi(2n)$.
- 2. Define Möbius function $\mu(n)$ and show that $\sum_{d/n} \mu(d) = 0$ if n > 1.
- 3. Give an example of a multiplicative function which is not completely multiplica-
- 4. Assume f is multiplicative, then prove that $f^{-1}(p^2) = (f(p))^2 f(p^2)$ for every
- 5. Define divisor functions $\sigma_{\alpha}(n)$ for $n \geq 1$ and show that they are multiplicative.
- 6. Prove that $[x] + [x + \frac{1}{2}] = [2x]$.
- 7. For $x \ge 2$ prove that $\vartheta(x) = \pi(x) \log x \int_2^x \frac{\pi(t)}{t} dt$.
- 8. Show that if a > 0 and b > 0, then $\lim_{x \to \infty} \frac{\pi(ax)}{\pi(bx)} = \frac{a}{b}$.
- 9. For $x \ge 2$, prove that $\sum_{n \le x} \frac{n}{\phi(n)} = O(x)$, represents the quadratic reduction of $\sum_{n \le x} \frac{n}{\phi(n)} = O(x)$.
- 10. Calculate highest power of 10 that divides 1000!.
- 11. If p is an odd prime, prove that $\sum_{r=1}^{p-1} r(r/p) = 0$ if $p \equiv 1 \pmod{4}$.
- 12. Derive Selberg identity.
- 13. Write a note on enciphering key.
- 14. What is a cryptosystem?

 $(14 \times 1 = 14 \text{ Weightage})$

Part B

Answer any seven questions. Each carries 2 weightage

- 15. Let f be multiplicative. Then f is completely multiplicative if, and only if, $f^{-1}(n) = \mu(n)f(n)$ for all $n \ge 1$. Thus find the inverse of Euler's function ϕ .
- 16. Prove that $\sum_{d \mid n} \mu(d) \log^m d = 0$, if $m \ge 1$ and n has more than m distinct prime factors.
- 17. Prove that $\sum_{n \leq x} \lambda(n) \left[\frac{x}{n} \right] = [\sqrt{x}].$
- 18. State and prove Euler's summation formula.
- 19. State and prove Abel's identity.
- 20. Show that the Legendre's symbol (n/p) is a completely multiplicative function of n.
- 21. Show that if p is an odd positive integer then:
- 3. Give an example of a multiplicative function which is (-1/p) = (-1)(-1/p) = (-1/p) (a) ica-
 - (b) $(2/p) = (-1)^{p^2-1/8}$
- 22. Find the inverse of the matrix $\begin{pmatrix} 15 & 17 \\ 4 & 9 \end{pmatrix}$ mod 26.
- 23. Explain briefly about digraph transformations.
- 24. Explain the RSA cryptosystem. Illustrate with an example.

 $(7 \times 2 = 14 \text{ Weightage})$

Part $C_{1}(x) = \pi(x)$ and the event $2 \le x$ and

Answer any two questions. Each carries 4 weightage

- 25. Prove that for every integer $n \ge 2$ we have $\frac{1}{6} \frac{n}{\log n} < \pi(n) < 6 \frac{n}{\log n}$.
- 26.(a) State and prove the quadratic reciprocity law.
 - (b) Determine whether 219 is a quadratic residue or nonresidue mod 383.
- 27. Explain the advantages and disadvantages of public key cryptosystem as compared to classical cryptosystems.
- 28. State Abel's Identity and deduce Euler's Summation formula from Abel's identity.

 $(2 \times 4 = 8 \text{ Weightage})$
