18P167

(Pages: 3)

FIRST SEMESTER M.A. DEGREE EXA							
(Regular/Supplementary) (CUCSS-P							
CC15P ECO1 C04 – QUANTITATIVE METH							
(Economic							
Time:	Three Hours	(2015 Admission					
1 1110	111100 1100115	Part A					
	-	tions. Each bunch of for					
1.		is said to be symmetric					
	a) $A = -A^T$	b) $A = A^T$					
2.	If $A^2 = A$, then the m						
	a) nil potent	b) idem potent					
3.	The value of the deter	$ \operatorname{rminant} \begin{vmatrix} 1 & 2 & -3 \\ 2 & -1 & 2 \\ 3 & 2 & 4 \end{vmatrix} i $					
	a) -33	b) 23					
4.	The characteristic roo	ots of $\begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$ are					
	a) 5,2	b) 5,3					
5.	For the demand law :	$x = \frac{20}{p+1}$ the elasticity of					
	a) $\frac{3}{4}$	b) $\frac{4}{3}$					
6.	The rank of the matri	$ x \begin{bmatrix} 5 & 2 & 1 \\ 0 & 1 & 3 \\ 2 & 1 & 0 \end{bmatrix} $ is:					
	a) 3	b) 1					
7.	The function $y = 3x$	$x^2 - 14x + 5$ increasing					
	a) 4	b) 5					
8.	If $y = \frac{1}{x^2}$, $\frac{dy}{dx}$ is						
	a) $\frac{-2}{x^2}$	b) $\frac{-2}{x^3}$					
9.	A positively sloped c	urve moves					
	a) upward	b) downward					

(1)

nta	AMINATION, No	Name: Reg.No OVEMBER 2018			
SS-PG) CTHODS FOR ECONOMIC ANALYSIS - I					
sio	iics) n onwards)	Maximum: 36 Weightage			
rt A f four questions carries weightage 1 tric if					
	c) $AA^{T} = -1$	d) none of these			
-3 2	c) symmetric is:	d) skew symmetric			
4 I	c) 40	d) 79			
	c)1,5	d)1,4			
y c	of demand with res	spect to price at point $p = 3$ is			
	c) 4	d) none of these			
sin	c) 2 g when x is equal	d) none of these			
	c) 7	d) 9			
	c) $\frac{-2}{x^{-2}}$	d) $\frac{-2}{x^{-3}}$			
	c) horizontally	d) vertically			

Turn Over

10. The producers surplus when the supply function is p = 10 + 2q and the equilibrium

price 20 is					
a) 35	b) 25	c) 100	d) 50		
11. $\int_{1}^{e} \frac{1}{x} dx$ is equal to:					
a) log e	b) 0	c) log 1	d) None of these		
12. If $A \subset B$ then P(A/B) is equal to					
a) Zero	b) 1	c) $\frac{P(A)}{P(B)}$	d) $\frac{P(B)}{P(A)}$		
			$(12 \times \frac{1}{4} = 3 \text{ Weightage})$		

Part B

Answer any *five* questions. Each question carries 1 weightage.

13. Define a matrix?

- 14. Examine whether the function $y = 100 x 2x^2$ is monotonic increasing or decreasing when X > 0
- 15. The marginal cost function for a certain product is $MC = 3q^2 4q + 5$. Find the total cost function given the fixed cost is Rs 100.
- 16. State Baye's theorem?
- 17. An unbiased coin is tossed twice. Find the probability of getting at least one head
- 18. Define conditional probability?
- 19. State multiplication theorem of probability?

20. If
$$P(A) = \frac{1}{4}$$
, $P(B^{C}) = \frac{2}{3}$, $P(AB) = \frac{1}{12}$ then find $P(AB^{C})$

 $(5 \times 1 = 5 \text{ Weightage})$

Part C

Answer any *eight* questions. Each question carries 2 weightage.

21. Let X be a continuous random variable with probability density function

$$f(x) = \begin{cases} ax & for \ 0 \le x \le 1\\ ax^2 & for \ 1 \le x \le 2\\ a & for \ 2 \le x \le 3\\ 0 & elsewhere \end{cases}$$

(i). Determine the constant a. (ii). Compute $P(X \le 1.5)$

22. State and prove addition theorem of probability?

23. If (A) = 0.3, P(B) = 0.2, P(AB) = 0.1 Find the probability of (i). At least one of

the event occurs (ii). Exactly one of the events occurs

24. Differentiate $Y = \frac{x^2 - 1}{x^2 + 1}$ with respect to x.

- and B^{C} are independent
- 26. Solve the system of equations by Crammer's rule.

3x + y + z = 8; x + y + z = 6; 2x + y - z = 1

- 27. If MC = $32 + 18Q 12Q^2$ find TC and AC if the fixed cost is 15.
- 28. Differentiate (i) $4x^3+3x^2-2x+7$ (ii) $\log(1+x)$ (iii) $(1+x)(1+x^3)$
- 29. A random variable has the probability density function f(x) = 6x(1-x); $0 \le x \le 1$. Find the mean and varience of x
- 30. A problem in statistics is given to three students A,B and C with the respective chances

of solving it are
$$\frac{1}{2}$$
, $\frac{1}{3}$, and $\frac{1}{4}$. What is the p

None of them solve the problem

31. Evaluate $\int_{0}^{2} (x^{2} + 2x + 3) dx$

Part D

Answer any three questions. Each question carries 4 weightage.

32. If
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 0 & 2 & 1 \\ -1 & 2 & 2 \end{bmatrix}$$
. Find the determinant of A

34. Three countries A,B,C manufacture 25%, 35%, 40% of the total software requirement of

35. Optimize the function f(x, y) = xy subject to the constraint $x^2 + y^2 = 8$

36. Find the maximum profit that a company can make if the profit function is given by

$$P(x) = 41 - 24x - 18x^2.$$

(3)

18P167

25. If A and B are two independent events. Show that (i) A^{C} and B^{C} are independent (ii). A

probability that (i). The problem is solved (ii).

$(8 \times 2 = 16 \text{ Weightage})$

A and the characteristic polynomial of A.

33. Find the adjoint of the matrix and verify that a (Adj A) = |A|I if A= $\begin{bmatrix} 1 & 4 & 5 \\ 3 & 2 & 2 \\ 0 & 1 & -3 \end{bmatrix}$

the world. Of their output 5%, 4% and 2% are defective. An output is selected at random and it is found defective. What is the probability that it was manufactured by B.

$(3 \times 4 = 12 \text{ Weightage})$