(Pages: 2)

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2018

(Regular/Supplementary/Improvement)

(CUCSS-PG)

CC15P MT1 C01 / CC17P MT1 C01 - ALGEBRA - I

(Mathematics)

(2015 Admission onwards)

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer *all* questions. Each question carries 1 weightage.

- 1. Find all abelian groups of order 16.
- 2. Do the rotations together with the identity map, form a subgroup of the group of plane isometries? Why?
- 3. Prove that a factor group of cyclic group is cyclic.
- 4. Compute the factor group $\frac{Z_2 \times Z_4}{\langle (1,2) \rangle}$
- 5. Find the number of orbits in $\{1,2,3,4,5,6,7,8\}$ under the cyclic subgroup of S₈ generated by (1, 3) and (2, 4, 7)
- 6. State Burnside's formula.
- 7. If H and N are subgroups of a group G, and N is normal in G, prove that $H \cap N$ is normal in H.
- 8. Find the center of $S_3 \times Z_4$
- 9. Find the order of Sylow 3 subgroup of a group of order 54.
- 10. Find the reduced form and the inverse of the reduced form of the word $a^2a^{-3}b^3a^4c^4c^2a^{-1}$
- 11. Give a presentation of Z_4 involving two generators.
- 12. Find a polynomial of degree > 0 in $Z_4 [x]$ that is a unit.
- 13. Write one non zero element in $End(\langle Z \times Z, + \rangle)$.
- 14. Let $\emptyset: R \to R'$ be a ring homomorphism and let *N* be an ideal of *R*. Show that $\emptyset(N)$ is an ideal of $\emptyset(R)$.

$(14 \times 1 = 14 \text{ Weightage})$

Part **B**

Answer any *seven* questions. Each question carries 2 weightage.

15. Show that if m divides the order of a finite abelian group G, then G has a subgroup of order m.

18P101

- 16. Show that if G is nonabelian, then the factor group ${}^{G}/_{Z(G)}$ is not cyclic.
- 17. State and prove Third isomorphism theorem.
- 18. Find isomorphic refinements of the two series $\{0\} < \langle 18 \rangle < \langle 3 \rangle < \mathbb{Z}_{72}$ and $\{0\} < \langle 24 \rangle < \langle 12 \rangle < \mathbb{Z}_{72}$
- 19. State and prove second sylow theorem.
- 20. Show that every group G' is a homomorphic image of a free group G
- 21. Show that the presentation $(a, b : a^3 = 1, b^2 = 1, ba = a^2b)$ gives a nonabelian group of order 6
- 22. Let D be an integral domain and x an indeterminate. Describe the units in D[x]
- 23. Give the addition and multiplication tables for the group algebra Z_2G , where $G = \{e, a\}$ is a cyclic group of order 2
- 24. Let R be a commutative ring and let $a \in R$. Show that $I_a = \{x \in R : ax = 0\}$ is an ideal of R

$(7 \times 2 = 14 \text{ Weightage})$

Part C

Answer any two questions. Each question carries 4 weightage.

- 25. (a) Let H be a subgroup of G. Then show that the left coset multiplication is well defined by the equation (aH). (bH) = (ab)H if and only if H is a normal subgroup of G
 - (b) Prove that $\frac{Z}{nZ} \cong Z_n$
- 26. (a) Let G be a group and H be a subgroup of G. Prove that the set of all left cosets of H in G form a G set
 - (b) Let X be a G set and let $x \in X$. Prove that $|Gx| = (G: G_x)$
- 27. (a) Prove that for a prime p, every group G of order p^2 is abelian.
 - (b) Find the decomposition of D_4 into conjugate classes.
- 28. (a) State and prove Eisenstein criteria of irreducibility over Q
 - (b) Find all prime numbers p such that x + 2 is a factor of $x^4 + x^3 + x^2 x + 1$ in $Z_p[x]$

 $(2 \times 4 = 8 \text{ Weightage})$
