\qquad
\qquad

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2018

(Regular/Supplementary/Improvement) (CUCSS-PG)
CC15P MT1 C01 / CC17P MT1 C01 - ALGEBRA - I
(Mathematics)
(2015 Admission onwards)
Time: Three Hours

Maximum: 36 Weightage

Part A

Answer all questions. Each question carries 1 weightage.

1. Find all abelian groups of order 16 .
2. Do the rotations together with the identity map, form a subgroup of the group of plane isometries? Why?
3. Prove that a factor group of cyclic group is cyclic.
4. Compute the factor group $\frac{\mathrm{Z}_{2} \times \mathrm{Z}_{4}}{\langle(\mathbf{1 , 2)}\rangle}$
5. Find the number of orbits in $\{1,2,3,4,5,6,7,8\}$ under the cyclic subgroup of S_{8} generated by $(1,3)$ and $(2,4,7)$
6. State Burnside's formula.
7. If H and N are subgroups of a group G , and N is normal in G , prove that $H \cap N$ is normal in H .
8. Find the center of $S_{3} \times Z_{4}$
9. Find the order of Sylow 3 - subgroup of a group of order 54 .
10. Find the reduced form and the inverse of the reduced form of the word $a^{2} a^{-3} b^{3} a^{4} c^{4} c^{2} a^{-1}$
11. Give a presentation of Z_{4} involving two generators.
12. Find a polynomial of degree >0 in $Z_{4}[x]$ that is a unit.
13. Write one non zero element in $\operatorname{End}(<Z \times Z,+>)$.
14. Let $\emptyset: R \rightarrow R^{\prime}$ be a ring homomorphism and let N be an ideal of R. Show that $\emptyset(N)$ is an ideal of $\emptyset(R)$.
($14 \times 1=14$ Weightage)

Part B

Answer any seven questions. Each question carries 2 weightage.
15. Show that if m divides the order of a finite abelian group G , then G has a subgroup of order m.
16. Show that if G is nonabelian, then the factor group $G / Z(G)$ is not cyclic.
17. State and prove Third isomorphism theorem.
18. Find isomorphic refinements of the two series $\{0\}<\langle 18\rangle<\langle 3\rangle<\mathbb{Z}_{72}$ and $\{0\}<\langle 24\rangle<\langle 12\rangle<\mathbb{Z}_{72}$
19. State and prove second sylow theorem.
20. Show that every group G^{\prime} is a homomorphic image of a free group G
21. Show that the presentation ($a, b: a^{3}=1, b^{2}=1, b a=a^{2} b$) gives a nonabelian group of order 6
22. Let D be an integral domain and x an indeterminate. Describe the units in $D[x]$
23. Give the addition and multiplication tables for the group algebra $Z_{2} G$, where $G=\{e, a\}$ is a cyclic group of order 2
24. Let R be a commutative ring and let $a \in R$.Show that $I_{a}=\{x \in R: a x=0\}$ is an ideal of R

$$
(7 \times 2=14 \text { Weightage })
$$

Part C

Answer any two questions. Each question carries 4 weightage.
25. (a) Let H be a subgroup of G . Then show that the left coset multiplication is well defined by the equation $(\mathrm{aH}) .(\mathrm{bH})=(\mathrm{ab}) \mathrm{H}$ if and only if H is a normal subgroup of G
(b) Prove that $\frac{\mathrm{Z}}{\mathrm{nZ}} \cong \mathrm{Z}_{\mathrm{n}}$
26. (a) Let G be a group and H be a subgroup of G . Prove that the set of all left cosets of H in G form a G set
(b) Let X be a G set and let $\mathrm{x} \in \mathrm{X}$. Prove that $|\mathrm{Gx}|=\left(\mathrm{G}: \mathrm{G}_{\mathrm{x}}\right)$
27. (a) Prove that for a prime p, every group G of order p^{2} is abelian.
(b) Find the decomposition of D_{4} into conjugate classes.
28. (a) State and prove Eisenstein criteria of irreducibility over Q
(b) Find all prime numbers p such that $x+2$ is a factor of $x^{4}+x^{3}+x^{2}-x+1$ in $\mathrm{Z}_{\mathrm{p}}[\mathrm{x}]$
($\mathbf{2} \times \mathbf{4}=\mathbf{8}$ Weightage)

