\qquad
\qquad

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2018

(Regular/Supplementary/Improvement) (CUCSS-PG)
CC15P MT1 C05 / CC17P MT1 C05 - DISCRETE MATHEMATICS (Mathematics)
(2015 Admissions onwards)
Time: Three Hours

Maximum: 36 Weightage

Part A

Answer all questions. Each question carries 1 weightage.

1. Characterize atoms of a power set Boolean algebra.
2. Obtain the conjunctive normal form of the Boolean expression $x y^{\prime}\left(x^{\prime}+y^{\prime}+x y\right)$
3. Define Boolean algebra. Prove that $x+x . y=x \quad \forall x, y \in X$ where $(X,+, ., ')$ is a Boolean algebra.
4. Define a strict partial order. If P is a partial order on the set X, show that $P-\{(x, x): x \in X\}$ is a strict partial order.
5. For any simple graph G, show that $\sqrt{ }(G)=\sqrt{ }\left(G^{c}\right)$
6. If G is simple and $\delta \geq \frac{n-1}{2}$, then show that G is connected.
7. Prove that a connected graph G with at least two vertices contains at least two vertices that are not cut vertices.
8. If $(G) \geq 2$, then prove that G contains a cycle.
9. Show that the number of edges of a simple graph with ω components cannot exceed $\frac{(n-\omega)(n-\omega+1)}{2}$
10. Define connectivity and edge connectivity. Give an example.
11. Let $\sum=\{a, b\}$ and $L=\left\{a^{n} b^{m}: n \geq 0, m>n\right\}$. Find a grammar that generates L.
12. If $\sum=\{0,1\}$, design an NFA to accept set of strings ending with two consecutive zeroes.
13. Find an NFA which accepts the set of all strings containing 'aabb' as a substring.
14. Find a DFA for the language $\mathrm{L}=\left\{a^{n}: n\right.$ is odd. $\left.n \neq 3\right\}$

Part B

Answer any seven questions. Each question carries 2 weightage.
15. Let $(X,+, ., ')$ be a finite Boolean algebra.Then prove that every element of X can be uniquely expressed as the sum of atoms in it.
16. State and prove Stone representation theorem for finite Boolean algebras.
17. Prove that the relation ' \leq^{\prime} defined by $x \leq y$ if $x \cdot y^{\prime}=0$ makes the underlying set of Boolean algebra into a lattice.
18. Prove that a graph is bipartite iff it contains no odd cycles.
19. Prove that in a connected graph G with at least 3 vertices, any two longest paths have a vertex in common.
20. Prove that $\kappa(\mathrm{G}) \leq \lambda(G) \leq \delta(G)$ for any loopless connected graph G.
21. State and prove Euler's formula.
22. Show that an edge in a simple graph is a cut edge iff it belongs to no cycles.
23. Define NFA and DFA.
24. Design a DFA that accepts the language $L=\left\{a b^{n} a^{m}, n \geq 2, m \geq 3\right\}$
($\mathbf{7} \times 2=14$ Weightage)

Part C

Answer any two questions. Each question carries 4 weightage.
25 . i) Let (X, \leq) be a poset and A be a non-empty finite subset of X . Then prove that A has at least one maximal element.
ii) Prove that a finite non-empty subset of a poset has a maximum element iff it has a unique maximal element.
26. State and prove Whitney's theorem. Also show that a graph G with at least 3 vertices is 2-connected iff any two vertices of G lie on a common cycle.
27. Prove that a connected graph G with atleast two vertices is a tree iff its degree sequence $\left(d_{1}, d_{2}, \ldots \ldots . d_{n}\right)$ satisfies the condition $\sum_{i=1}^{n} d_{i}=2(n-1)$
28. Show that the grammar G with $\sum=\{a, b\}$ and productions $S \rightarrow S S, S \rightarrow \lambda$, $S \rightarrow a S b, S \rightarrow b S a$, generates the languge $L=\left\{w: n_{a}(w)=n_{b}(w)\right\}$ where $n_{a}(w)$ and $n_{b}(w)$ are number of a 's and $b^{\prime} s$ in w respectively.
($2 \times 4=8$ Weightage)

