\qquad
\qquad

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2018

(Regular/Supplementary/Improvement) (CUCSS-PG)

CC15P MT1 C02 / CC17P MT1 C02 - LINEAR ALGEBRA
 (Mathematics)

(2015 Admission onwards)
Time: Three Hours
Maximum: 36 Weightage

PART A

Answer all questions. Each question carries 1 weightage.

1. Verify whether $\{(1,2,3),(1,3,1)\}$ is a basis for R^{3}.
2. Find the dimension of the space of all $n x n$ diagonal matrices over R .
3. Let $\mathrm{V}=\mathrm{R}^{2}$ and $W_{1}=\{(x, 0): x \in R\}$. Find a subspace W_{2} of V such that $V=W_{1} \oplus W_{2}$
4. Find the characteristic polynomial of $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
5. Find the null space of the linear transformation $T: R^{2} \rightarrow R^{2}$ where $T(x, y)=(y, x)$
6. Let T be a linear operator on a vector space V . Verify whether $\operatorname{Im}(T)$ is invariant subspace for T .
7. Define non-singular transformation. Show that a linear transformation T is non singular iff T is one-one.
8. Find the co-ordinate vector of $(1,2,3) \in R^{3}$ with respect to the ordered basis $\{(1,2,0),(1,1,0),(0,1,1)\}$.
9. Let $W=\operatorname{span}\{(1,1,0),(1,0,1)\}$. Let F be defined by $F(x, y, z)=x-y-z$. Verify whether F belongs to W^{o}.
10. Give an example of a linear functional on R^{3}.
11. Show that $T(x, y)=(2 x+y, y)$ is diagonalizable.
12. Verify whether $T: R^{2} \rightarrow R^{2}$ defined by $T(x, y)=(2 x+y, 0)$ is a projection.
13. Define an inner product space and write an example for the same.
14. Find the orthogonal complement of $W=\{(x, x): x \in R\}$ in R^{2}.
($14 \times 1=14$ Weightage)

PART B

Answer any seven questions. Each question carries 2 weightage.
15. Prove that the intersection of two subspaces of a Vector Space is a subspace of the Vector Space. Is the union of any two subspaces again a subspace? Justify your claim.
16. Define characteristic polynomial of a matrix. Prove that similar matrices have the same characteristic polynomial
17. Show that a finite dimensional vector space V is linearly isomorphic to its second dual.
18. Show that the row space of $\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 3\end{array}\right]$ is R^{3}
19. Does there exist a linear transformation from R^{3} in to R^{2} such that $T(1,-1,1)=(1,0)$ and $T(1,1,1)=(0,1) ?$
20. Let F be a field and let T be the operator on F^{2} defined by $T\left(x_{1}, x_{2}\right)=\left(x_{1}, 0\right)$. Find the matrix of T relative to the standard basis of F^{2}.
21. Prove that if W_{1} and W_{2} are subspaces of a finite dimensional vector space then $W_{1}=W_{2}$ if and only if $\mathrm{W}_{1}{ }^{\circ}=\mathrm{W}_{2}{ }^{\circ}$.
22. Let $\mathrm{B}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ be the basis for C^{3}, defined by $\alpha_{1}=(1,0,-1), \alpha_{2}=(1,1,1)$, $\alpha_{3}=(2,2,0)$. Find the dual basis of B.
23. Let V and W be two finite dimensional vector spaces over the field F and let T be a linear transformation from V into W . Then prove that $\operatorname{Rank}\left(\mathrm{T}^{t}\right)=\operatorname{Rank}(\mathrm{T})$
24. Prove that every projection is diagonalizable.

$$
\text { (} 7 \times 2=14 \text { Weightage) }
$$

PART C

Answer any two questions. Each question carries 4 weightage.
25. Define dimension of a vector space. Show that if W_{1}, W_{2} are subspaces of a finite dimensional vector space, then

$$
\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}-\operatorname{dim}\left(W_{1} \cap W_{2}\right)
$$

26. Let V be an finite dimensional vector space over the field F and let T be a linear operator on V . Then T is diagonalizable if and only if the minimal polynomial for T has the form $P(x)=\left(x-c_{1}\right)\left(x-c_{2}\right) \ldots . .\left(x-c_{k}\right)$ where $c_{1}, c_{2}, \ldots . c_{k}$ are distinct elements of F .
27. Let V be a vector space of dimension n and W a vector space of dimension m. Show that $\mathrm{L}(\mathrm{V}, \mathrm{W})$ is a vector space of dimension mn .
28. (a) Prove that every finite dimensional inner product space has an orthonormal basis.
(b) Apply Gram-Schmidt orthogonalization process to $(1,0,1),(1,0,-1),(0,3,4)$ to obtain an orthonormal basis for \mathbf{R}^{3} with the standard inner product.
