(Pages: 2)

Name:	
Reg. No	

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2018

(Regular/Supplementary/Improvement)

(CUCSS-PG)

CC15P MT1 C02 / CC17P MT1 C02 - LINEAR ALGEBRA

(Mathematics)

(2015 Admission onwards)

Maximum: 36 Weightage

PART A

Answer *all* questions. Each question carries 1 weightage.

- 1. Verify whether $\{(1, 2, 3), (1, 3, 1)\}$ is a basis for \mathbb{R}^3 .
- 2. Find the dimension of the space of all nxn diagonal matrices over R.
- 3. Let $V = R^2$ and $W_1 = \{(x, 0) : x \in R\}$. Find a subspace W_2 of V such that $V = W_1 \oplus W_2$
- 4. Find the characteristic polynomial of $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$
- 5. Find the null space of the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ where T(x, y) = (y, x)
- 6. Let *T* be a linear operator on a vector space V. Verify whether Im (T) is invariant subspace for T.
- 7. Define non-singular transformation. Show that a linear transformation T is non singular iff T is one-one.
- 8. Find the co-ordinate vector of $(1, 2, 3) \in \mathbb{R}^3$ with respect to the ordered basis $\{(1, 2, 0), (1, 1, 0), (0, 1, 1)\}.$
- 9. Let W = span {(1,1,0), (1,0,1)}. Let F be defined by F(x, y, z) = x y z. Verify whether F belongs to W^o .
- 10. Give an example of a linear functional on R^3 .
- 11. Show that T(x, y) = (2x + y, y) is diagonalizable.
- 12. Verify whether T: $\mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x, y) = (2x + y, 0) is a projection.
- 13. Define an inner product space and write an example for the same.
- 14. Find the orthogonal complement of $W = \{(x, x) : x \in R\}$ in \mathbb{R}^2 .

(14 x 1 = 14 Weightage)

PART B

Answer any *seven* questions. Each question carries 2 weightage.

15. Prove that the intersection of two subspaces of a Vector Space is a subspace of the Vector Space. Is the union of any two subspaces again a subspace? Justify your claim.

18P102

Time: Three Hours

- 16. Define characteristic polynomial of a matrix. Prove that similar matrices have the same characteristic polynomial
- 17. Show that a finite dimensional vector space V is linearly isomorphic to its second dual.
- 18. Show that the row space of $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix}$ is R³
- 19. Does there exist a linear transformation from R^3 in to R^2 such that

T(1,-1,1) = (1,0) and T(1,1,1) = (0,1)?

- 20. Let *F* be a field and let *T* be the operator on F^2 defined by $T(x_1, x_2) = (x_1, 0)$. Find the matrix of T relative to the standard basis of F^2 .
- 21. Prove that if W_1 and W_2 are subspaces of a finite dimensional vector space then $W_1 = W_2$ if and only if $W_1^o = W_2^o$.
- 22. Let B= { $\alpha_1, \alpha_2, \alpha_3$ } be the basis for C³, defined by $\alpha_1 = (1,0,-1), \alpha_2 = (1,1,1), \alpha_3 = (2,2,0)$. Find the dual basis of B.
- 23. Let V and W be two finite dimensional vector spaces over the field F and let T be a linear transformation from V into W. Then prove that $Rank(T^t) = Rank(T)$
- 24. Prove that every projection is diagonalizable.

(7 x 2 = 14 Weightage)

PART C

Answer any two questions. Each question carries 4 weightage.

25. Define dimension of a vector space. Show that if W₁, W₂ are subspaces of a finite dimensional vector space, then

 $dim(W_1 + W_2) = dim W_1 + dim W_2 - dim(W_1 \cap W_2)$

- 26. Let V be an finite dimensional vector space over the field F and let T be a linear operator on V. Then T is diagonalizable if and only if the minimal polynomial for T has the form $P(x) = (x c_1)(x c_2) \dots (x c_k)$ where c_1, c_2, \dots, c_k are distinct elements of F.
- 27. Let V be a vector space of dimension n and W a vector space of dimension m. Show that L(V,W) is a vector space of dimension mn.
- 28. (a) Prove that every finite dimensional inner product space has an orthonormal basis.
 - (b) Apply Gram-Schmidt orthogonalization process to (1,0,1), (1,0,-1), (0,3,4) to obtain an orthonormal basis for \mathbf{R}^3 with the standard inner product.

(2 x 4 = 8 Weightage)
