(Pages: 2)

Name:..... Reg.No:....

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2018

(Regular/Supplementary/Improvement)

(CUCSS-PG)

CC17P MT1 C04 NUMBER THEORY

(Mathematics)

(2017 Admission onwards)

Time :Three Hours

Maximum : 36 weightage

Part A

Answer *all* questions. Each question carries 1 weightage.

1. Define Möbius function $\mu(n)$ and show that $\sum_{d^2/n} \mu(d) = \mu^2(n)$

- 2. Let d(n) denotes the number of positive divisors of n. Prove that d(n) is odd if and only if n is square.
- 3. If f is multiplicative, then $F(n) = \prod_{d/n} f(d)$ is multiplicative. Prove or disprove.
- 4. Find all integers n such that $\phi(n) = n/2$
- 5. Assume f is multiplicative, then prove that $f^{-1}(p^2) = (f(p))^2 f(p^2)$ for every prime p.
- 6. Prove that for $x \ge 1$, $\sum_{n \le x} \mu(n)[\frac{x}{n}] = 1$
- 7. Let $f(x) = x^2 + x + 41$. Find the smallest integer $x \ge 0$ for which f(x) is composite.
- 8. State and prove Legendre's identity.
- 9. Define Legendre's symbol.

10. If p is prime, prove that $\sum_{r=1}^{p-1} (r/p) = 0$

- 11. Prove that 5 is a quadratic residue of an odd prime p if $p \equiv \pm 1 \pmod{10}$.
- 12. Derive Selberg identity.

13. Find the inverse of the matrix
$$\begin{pmatrix} 1 & 3 \\ 4 & 3 \end{pmatrix} \mod 5$$

14. What is a cryptosystem?

18P104

Part B

Answer any seven questions. Each question carries 2 weightage.

- 15. Prove that every number of the form $2^{a-1}(2^a-1)$ is perfect if 2^a-1 is prime.
- 16. If f is completely multiplicative, prove that $(f.g)^{-1} = f.g^{-1}$ for every arithmetical function g with $g(1) \neq 0$ where f.g denotes the ordinary product, (f.g)(n) = f(n)g(n)
- 17. State and prove Euler's summation formula.
- 18. If $A(x) = \sum_{n \le x} \frac{\mu(n)}{n}$, then prove that the relation A(x) = o(1) as $x \to \infty$ implies the prime number theorem.
- 19. State and prove Abel's identity.
- 20. Determine whether 219 is a quadratic residue or nonresidue mod 383
- 21. State and prove Euler's criterion for Legendre's symbol.
- 22. State and prove reciprocity law for Jacobi symbols.
- 23. Explain briefly about classical cryptosystem.
- 24. How will you authenticate a message in public key cryptosystem.

 $(7 \times 2 = 14 \text{ Weightage})$

Part C

Answer any *two* questions. Each question carries 4 weightage.

25. If $x \ge 1$ then prove that

(a)
$$\sum_{n \le x} \frac{1}{n} = \log x + C + O(\frac{1}{x})$$

(b) $\sum_{n > x} \frac{1}{n^s} = O(x^{1-s}) \text{ if } s > 1$

- 26. Let $\{a(n)\}$ be a non-negative sequence such that: $\sum_{n \le x} a(n) [\frac{x}{n}] = x \log x + O(x)$ for all $x \ge 1$. Prove that there is a constant B > 0 such that: $\sum_{n \le x} a(n) \le nB(x)$ for all $x \ge 1$.
- 27. Determine those odd primes p for which 3 is a quadratic residue mod p and those for which it is a non-residue.
- 28. State and prove Gauss' Lemma.

 $(2 \times 4 = 8 \text{ Weightage})$
