\qquad
\qquad

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2018

(Regular/Supplementary/Improvement) (CUCSS-PG)

CC15P PHY1 C01 / CC17P PHY1 C01 - CLASSICAL MECHANICS

(Physics)
(2015 Admission onwards)
Time: Three Hours

Maximum: 36 Weightage

Section A

Answer all questions. Each question carries 1 weightage.

1. What are constraints? Mention the difficulties introduced by the constraints in the solution of mechanical problems.
2. Discuss the superiority of Lagrangian approach over Newtonian approach.
3. What is a cyclic co-ordinate? Show that generalized momentum conjugate to a cyclic co-ordinate is conserved.
4. Prove that the motion of a particle under central force takes place in a plane.
5. For a conservative system, deduce the equation

$$
\Delta \int_{\mathrm{t}_{1}}^{\mathrm{t}_{2}} \sum_{\mathrm{k}} \mathrm{P}_{\mathrm{k}} \dot{\mathrm{q}}_{\mathrm{k}} \mathrm{dt}=0
$$

6. Discuss Legendre Transformations.
7. Define a Poisson Brackets. Derive the relation between Lagrange Brackets and Poisson Brackets.
8. Establish Hamilton Jacobi equation.
9. From the general theory of small oscillations, deduce the equation of motion of a system executing small oscillations.

10 . Find the relation between the angular momentum, the inertia sensor \& the angular velocity vector.
11. Explain Coriolis forces.
12. Discuss the phase trajectory for the force equation $F=k x$, where ' \mathbf{k} ' is a positive constant.

Section B

Answer any two questions. Each question carries 6 weightage.
13. What are action - angle variables? How are they used to obtain the frequencies of periodic motion? Determine the frequency of a linear harmonic oscillator using action - angle variables.
14. Discuss in detail, the vibrations of a carbon dioxide $\left(\mathrm{CO}_{2}\right)$ molecule.
15. Describe the force free motion of a rigid body.
16. What is a logistic map? Discuss fixed points and their stability. Explain how the bifurcations lead to chaos when the control parameter exceeds 3.57.

$$
\text { (} 2 \times 6=12 \text { Weightage) }
$$

Section C

Answer any four questions. Each question carries 3 weightage
17. Obtain the Lagrangian for a charged particle moving in an electromagnetic field.
18. A particle of mass ' m ' moves along the x axis under the influence of potential energy $\mathrm{V}(\mathrm{x})=-\mathrm{kx} \exp (-\beta \mathrm{x})$, where k and β are constants. Find the equilibrium position.
19. Show that the period of non - linear oscillations of a simple pendulum is

$$
T=T 0\left[1+\frac{\theta_{0}{ }^{2}}{16}\right]
$$

where $\mathbf{T o}=\mathbf{2} \boldsymbol{\pi} \sqrt{\frac{\mathbf{l}}{\mathbf{g}}}$ and $\theta \mathrm{o}=$ amplitude of oscillation
20. The Lagrangian for anharmonic oscillator is given by $L(x, \dot{x})=\frac{1}{2} \dot{x}^{2}-\frac{1}{2} w^{2} x^{2}-\alpha x^{3}$. Find the Hamiltonian.
21. Consider a rectangular parallelopiped of uniform density ρ, mass M with sides a, b and c. For the origin at one corner, find the moments and products of inertia of the parallelopiped by taking the co-ordinate axes along the edges. Hence determine the inertia tensor of a cube ($a=b=c$)
22. Show that the given transformation is canonical

$$
\mathrm{q}=\sqrt{2 \mathrm{P}} \sin \mathrm{Q}, \quad \mathrm{p}=\sqrt{2 \mathrm{P}} \cos \mathrm{Q}
$$

