(Pages: 2)

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2018

(Regular/Supplementary/Improvement)

(CUCSS-PG)

CC15P MT1 C03 / CC17P MT1 C03 - REAL ANALYSIS-I

(Mathematics)

(2015 Admission onwards)

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer *all* questions. Each question carries 1 weightage.

- 1. Show that interior of a set is open.
- 2. Prove that every neighborhood is convex.
- 3. Show that length of the Cantor set is zero.
- 4. Is set of irrational numbers connected? Justify your answer.
- 5. Is every continuous function is an open mapping? Justify.
- 6. Define simple discontinuity with an example.
- 7. State intermediate value theorem. Is the converse true?
- 8. Discuss the differentiability of the greatest integer function in R.
- 9. If $f \in R(\alpha)$ and $g \in R(\alpha)$ on [a, b], then show that $f g \in R(\alpha)$
- 10. Show that if $f_1(x) \le f_2(x)$ on [a,b], then $\int_a^b f_1 \, d\alpha \le \int_a^b f_2 \, d\alpha$
- 11. If $\gamma(t) = e^{2it}$ where $0 \le t \le 2\pi$. Show that γ is rectifiable.
- 12. If K is compact, if $f_n \in C(K)$ for $n = 1,2,3 \dots$, and if $\{f_n\}$ is pointwise bounded and equicontinuous on K, then show that $\{f_n\}$ contains a uniformly convergent subsequence.
- 13. Prove that every uniformly convergent sequence of bounded functions is uniformly bounded.
- 14. Construct sequences $\{f_n\}$ and $\{g_n\}$ which converge uniformly on some set, but such that $\{f_n g_n\}$ does not converge uniformly on E.

$(14 \times 1 = 14 \text{ Weightage})$

Part B

Answer any seven questions. Each question carries 2 weightage.

- 15. Construct a compact set of real numbers whose limit points form a countable set.
- 16. Prove or disprove: "A set of finite points has no limit point".

18P103

- 17. Let f be monotonic on (a, b). Then show that the set of points of (a, b) at which f is discontinuous is at most countable.
- 18. Show that if f is continuous mapping of a metric space X into a metric space Y and if E is connected subset of X, then f(E) is connected.
- 19. State L'Hospital's rule. Is the rule true for complex valued functions? Justify.
- 20. State and prove Taylor's theorem.
- 21. If γ' is continuous on [a, b] then prove that γ is rectifiable and $\Lambda(\gamma) = \int_a^b |\gamma'(t)| dt$
- 22. If $f \in R$ on [a, b] and if there is a differentiable function F on [a, b] such that, F' = fthen $\int_a^b f(x) dx = F(b) - F(a)$
- 23. Construct a real continuous function on the real line which is nowhere differentiable.
- 24. Consider $f(x) = \sum_{n=1}^{\infty} \frac{1}{1+n^2x}$ For what values of x does the series converge absolutely? On what intervals does it converge uniformly? On what intervals does it fail to converge uniformly?

 $(7 \times 2 = 14 \text{ Weightage})$

Part C

Answer any two questions. Each question carries 4 weightage.

- 25. Let P be a nonempty perfect set in R^k , then show that P is uncountable.
- 26. Prove that monotonic functions have no discontinuities of the second kind.
- 27. Assume α increases monotonically and $\alpha' \in \mathcal{R}$ on [a, b]. Let f be a bounded real function on [a, b]. Then show that $f \in \mathcal{R}(\alpha)$ if and only if $f\alpha' \in \mathcal{R}$
- 28. State and prove Stone Weierstrass theorem.

 $(2 \times 4 = 8 \text{ Weightage})$
