\qquad
\qquad

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2018

(Regular/Supplementary/Improvement) (CUCSS-PG)

CC15P ST1 C02 - ANALYTICAL TOOLS FOR STATISTICS - I

(Statistics)
(2015 Admission onwards)
Time: Three Hours
Maximum: 36 Weightage

Part A

Answer all questions. Each question carries 1 weightage.

1. Define limit of a multivariable function.
2. Briefly explain the concept ' directional derivative'.
3. Define Riemann integral of a multivariable function.
4. Define an analytic function and give an example.
5. Show that the real part of an analytic function is harmonic.
6. State Cauchy's Integral formula and evaluate $\int_{|z|=2} \frac{d z}{(z-3)(z-1)}$.
7. What kind of singularity does $\frac{\sin z}{z^{2}}$ have at $z=0$? Explain.
8. Distinguish between the terms residue at a pole and residue at infinity.
9. Define removable singularity and illustrate with an example.
10. Define Laplace transform of a function. Obtain the same of a constant function.
11. If the Laplace transform of $\mathrm{F}(\mathrm{t}), \mathrm{L}\{\mathrm{F}(\mathrm{t})\}=\mathrm{f}(\mathrm{s})$, then find $\mathrm{L}\left\{e^{a t} \mathrm{~F}(\mathrm{t})\right\}$.
12. State Fourier integral theorem.
($12 \times 1=12$ Weightage)

Part B

Answer any eight questions. Each question carries 2 weightage.
13. Investigate the continuity of $f(x, y)=\left\{\begin{array}{cl}\frac{x y}{\sqrt{x^{2}+y^{2}}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0) .\end{array}\right.$
14. Show that $z=x \cos (y / x)+\tan (y / x)$ satisfies $x^{2} z_{x x}+2 x y z_{x y}+y^{2} z_{y y}=0$ except at points for which $\mathrm{x}=0$.
15. Examine the function $x^{2}+y^{2}+x+y+x y$ for maximum and minimum.
16. State Cauchy-Riemann equations and verify the same for $f(z)=z^{2}$.
17. Find an analytic function whose real part is $u=e^{x}(x \cos y-y \sin y)$.
18. Evaluate $\int_{|z|=2} \frac{1}{(z-1 / 2)^{2}(z-1)} d z$.
19. State and prove Moreras theorem.
20. Find Laurents series expansion of $f(z)=\frac{1}{z^{2}(1-z)}$, specifying the region of expansion.
21. Integrate $\frac{1}{z^{4}-1}$ around the circle (a) $|z+1|=1$ (b) $|z+3|=1$.
22. Find the Fourier transform of $f(x)=x$ if $a \leq x \leq b$.
23. If the Laplace transform of $\mathrm{F}(\mathrm{t}), \mathrm{L}\{\mathrm{F}(\mathrm{t})\}=\mathrm{f}(\mathrm{s})$, show that $L\left\{t^{n} F(t)\right\}=(-1)^{n} \frac{d^{n}}{d s^{n}} f(s)$.
24. Define inverse Laplace transform of a function and obtain the same of $\frac{2 s^{2}+1}{s(s+1)^{2}}$.

($8 \times 2=16$ Weightage)

Part C

Answer any two questions. Each question carries 4 weightage.
25. If $x y z=a b c$, find the optimum value of $b c x+c a y+a b z$.
26. State and prove the necessary and sufficient condition for a function to be analytic.
27. Establish residue theorem and evaluate $\int_{0}^{\pi} \frac{1}{2+\cos \theta} d \theta$.
28. Find the Fourier series expansion of $f(x)=x+x^{2},-\pi<x<\pi$.

Hence show that $\frac{\pi^{2}}{6}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots \ldots$.

