1	8P	1	65
_	U	_	\mathbf{v}

(Pages: 2)

Name: Reg. No.....

Maximum: 36 Weightage

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2018

(Regular/Supplementary/Improvement)

(CUCSS-PG)

CC15P ST1 C04 - REGRESSION AND LINEAR PROGRAMMING

(Statistics)

(2015 Admission onwards) Time: Three Hours

PART A

Answer all questions. Each question carries 1 weightage.

- 1. Explain Gauss- Markov linear model.
- 2. Consider the linear model $Y = X\beta + \varepsilon$. Show that $\lambda^T \beta$ is estimable if and only if $\lambda \in R(X)$
- 3. Explain the method of testing the significance of simple linear regression using t test.
- 4. Explain link function. What is meant by canonical link?
- 5. Distinguish between standardized and Studentized residuals.
- 6. Explain logistic regression models.
- 7. Explain the various steps involved in solving LPP by graphical method.
- 8. Differentiate between slack and surplus variables.
- 9. Explain the concept of duality and its uses in LPP.
- 10. Prove that dual of dual is primal.
- 11. What is an unbounded assignment problem?
- 12. Define a saddle point. Is it necessary that a game should always possess a saddle point?

 $(12 \times 1 = 12 \text{ Weightage})$

PART B

Answer any eight questions. Each question carries 2 weightage.

- 13. Consider the simple linear regression model $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$. Derive the means and variances of the least square estimates of β_0 and β_1
- 14. Establish Gauss Markov theorem.
- 15. Explain the application of orthogonal polynomials.
- 16. Discuss Poisson regression model and fit the model using the method of maximum likelihood.
- 17. Consider the multiple linear regression model $y = \beta_0 + \beta_1 x_1 + \cdots + \beta_n x_n + \epsilon$ where $\epsilon \sim N(0, \sigma^2)$. Prove that residual mean square is an unbiased estimator of σ^2 .
- 18. What is over dispersion?
- 19. Solve the following LPP

 $Z = 4X_1 + X_2 + 4X_3 + 5X_4$ subject to the constraints: Maximize $4X_1 - 6X_2 - 5X_3 + 4X_4 \ge -20$ $3X_1 - 2X_2 + 4X_3 + X_4 \le 10$ $8X_1 - 3X_2 + 3X_3 + 2X_4 \le 20$ $X_1, X_2, X_3, X_4 \ge 0$

- 20. Explain LP model. Also give the guidelines on linear programming problem.
- 21. A company management and the labor union are negotiating a new three year settlement. Each of these has 4 strategies
 - I. Hard and aggressive bargaining
 - II. Reasoning and logical approach
 - III. Legalistic strategy
 - IV. Conciliatory approach

The costs to the company are given for every pair of strategy choice.

Union strategies	Company strategies				
Official strategies	I	II	III	IV	
1	20	15	12	35	
2	25	14	8	10	
3	40	2	10	5	
4	-5	4	11	0	

Find the assignment of union strategies to various company strategies which yield maximum Profit.

- 22. Explain simplex algorithm. Why this method is called iterative method?
- 23. "Hungarian method is one of the important methods of assignment problem". Explain Hungarian method.
- 24. Prove "Dual of a dual of the given primal is the primal".

 $(8 \times 2 = 16 \text{ Weightage})$

PART C

Answer any two questions. Each question carries 4 weightage.

- 25. Explain different methods for diagnosing violation of the basic regression assumptions.
- 26. Distinguish between multiple regression and logistic regression models. Estimate the parameters of logistic regression model.
- 27. a) "The penalty will be designed by -M for a maximization problem and +M for a minimization, where M > 0". Identify the method and also its algorithm.
 - b) Solve the linear programming problem:

Maximize $Z = 5X_1 + 3X_2$ Subject to the constraints:

$$2X_1 + 4X_2 \le 12$$

$$2X_1 + 2X_2 = 10$$

$$5X_1 + 2X_2 \ge 10$$

$$X_1, X_2 \ge 0$$

28. Discuss the various steps involved in computing the optimum basic feasible solution to a transportation problem.

 $(2 \times 4 = 8 \text{ Weightage})$