19P160

(Pages: 3

FIRST SEMESTER M.A. DEGREE EXA (CUCSS P CC19P ECO1 C04 – QUANTITATIVE METH (Economic (2019 Admission

Time: Three Hours

Part A

Answer all questions. Each quest

1. A square matrix A is said to be orthogonal if a) $AA^{T} = 0$ b) $AA^{T}=1$ 2. The rank of the matrix $\begin{bmatrix} 3 & 2 \\ 6 & 4 \end{bmatrix}$ is a) 0 b) 1 3. The characteristic roots of $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ are b) 1,3 a) 1,2 4. A positively sloped curve moves a) Upward b) Downward 5. Find $\lim_{x \to 2} \frac{x^2 - 4x}{x + 2}$ 6. If $Z = x^2 + 3xy - 4y^2$, then $\frac{\partial Z}{\partial x} =$ b) 3x-8y a) 2x+3y 7. $\frac{d\sqrt{x}}{dx}$ is a) $2\sqrt{x}$ b) $\frac{1}{2\sqrt{x}}$ 8. For the cost function $C = x(x^2 - 2)$, the mar a) 5 b) 10 9. Which of the following areas can the differen a) Cob- Web model c) Both a and b 10. What is the order of the differential equation

a) First b) Second

(1)

) Name: Reg.No MINATION, NOVEMBER 2019 G)				
HODS FOR ECONOMIC ANALYSIS I				
ics) n Regular)	Maximum: 30 Weightage			
stion carries ¹ / ₅ weightage.				
c) $AA^{T} = -1$	d) None of these			
c) 2	d) None of these			
c) 1,5	d)1,4			
c) Horizontally	d) Vertically			
c) 2x+y	d) 2+3xy			
c) \sqrt{x}	d) $\frac{1}{\sqrt{x}}$			
rginal cost when th	e x = 2 is			
c) 12	d) 7			
nce equation be app	plied?			
b) Harrod Domar	model			
d) None of these				
$\frac{d^2y}{dx^2} - 7\frac{dy}{dx} + 8y =$	0?			
c) Third	d) None of these			

Turn Over

11. The 14th term of the se	ries 13, 17, 21, 25, i	S			
a) 268	b) 120	c) 39	d) 65		
12. The value of $\int_{-1}^{1} (3x^2)^{1/2} dx^2$	12. The value of $\int_{-1}^{1} (3x^2 - 4x^3) dx$ is				
a) 0	b) 1	c) 2	d) None of these		
13. Given a function F(y, t). Let $M = \frac{\partial F}{\partial y}$ and $N = \frac{\partial F}{\partial t}$. Then the exact differential equation is					
a) $Mdt + Ndy = 0$	b) $Mdy + Ndt = c$	c) $Mdt + Ndy = c$	d) $Mdy + Ndt = 0$		
14. The function $y = -2x^3 + 4x^2 + 9x - 10$ is concave when x is equal to					
a) 11	b) -5	c) -7	d) 3		
15. The finite difference given by $\Delta y_{t+1} - \Delta y_t$ is called					
a) First finite difference	2	b) Second finite diffe	erence		
c) Third finite difference	ce	d) None of these			
			(15 x ¹ / ₅ = 3 Weightage)		
Part B (Very short answer questions)					
Answer any <i>five</i> questions. Each question carries 1 weightage.					
16. Define exponential function.					
17. Define limit of a function.					
18. Show that $\begin{bmatrix} 2 & -1 & 3 \\ -1 & 2 & 1 \\ 3 & 1 & 4 \end{bmatrix}$ is symmetric.					
19. Examine whether the function $y = 100 - x - 2x^2$ is monotonic increasing or decreasing					
when $X > 0$					
20. If $y = \frac{x^2 - 1}{x^2 + 1}$, find $\frac{dy}{dx}$					
21. Distinguish between implicit and explicit functions.					
22. If $D = 250 - 50p$ and $S = 25p + 25$ are demand and supply function calculate equilibrium					
price.					
23. Write down the general formula for first order Linear Differential Equation.					
			(5 x 1 = 5 Weightage)		
Part C (Short answer questions) Answer any <i>seven</i> questions. Each question carries 2 weightage.					
24. A person had deposited `20,000 each in two banks, A and B. Both of the banks offer 6					
percent rate of interest. However, in bank A interest is compounded annually, while in bank					

B it is compounded half-yearly. After 3 years what will be the difference in the amount of interest that he may get from bank A and bank B?

25. Find the inverse of the matrix A where = $\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$ 26. Show that $\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = (a-b)(b-c)(c$ 27. Show that $f(x) = \begin{cases} 5 - x, & x \le 5\\ 1, & x > 5 \end{cases}$ is discontinuous at x = 528. Find the first order and second order partial derivatives of 29. Evaluate $\int x^2 e^{3x} dx$ 30. Solve $\frac{dy}{dx} + \frac{x}{y} = 0$. Also Find particular solution when x = 2, y = 131. Optimise the function $f(x) = x^2 - 8x + 25$ 32. The marginal cost function for a certain product is $MC = 3q^2 - 4q + 5$. Find the total cost function given the fixed cost is `100 33. Find the sum of natural numbers in between 200 and 400 which are exactly divisible by 7 (7 x 2 = 14 Weightage)Part D (Essay questions) Answer any two questions. Each question carries 4 weightage. 34. Find the characteristic equation and characteristic roots of the matrix $\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$

- output.
- 36. Integrate the following functions

a)
$$\int x^2 e^{3x} dx$$
 b) $\int_0^1 (3x^2 - 4x^2) dx$

37. Optimize the function f(x, y) = xy subject to the constraint $x^2 + y^2 = 8$

(2)

$$Z = 3 x^3 - 2xy^2 + 2x^2y + y^3 + 8$$

19P160

35. A firm has the following total cost and demand functions; $C = \frac{1}{3}Q^3 - 7Q^2 + 111Q + 50$ and Q = 100 - P. Find profit maximizing level of output. Also find profit at this level of

> $3x^2 - 4x^3)dx$ c) $\int x \log x dx$ $(2 \times 4 = 8 \text{ Weightage})$

(3)