FIRST SEMESTER M.A. DEGREE EXAMINATION, NOVEMBER 2019 (CUCSS PG)

CC19P ECO1 C04 - QUANTITATIVE METHODS FOR ECONOMIC ANALYSIS I

 (Economics)(2019 Admission Regular)
Time: Three Hours

Part A
Answer all questions. Each question carries $1 / 5$ weightage

1. A square matrix A is said to be orthogonal if
a) $\mathrm{AA}^{\mathrm{T}}=0$
b) $\mathrm{AA}^{\mathrm{T}}=1$
c) $\mathrm{AA}^{\mathrm{T}}=-1$
d) None of these
2. The rank of the matrix $\left[\begin{array}{ll}3 & 2 \\ 6 & 4\end{array}\right]$ is
a) 0
b) 1
c) 2
d) None of these
3. The characteristic roots of $\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$ are
a) 1,2
b) 1,3
c) 1,5
d) 1,4
4. A positively sloped curve moves
a) Upward
b) Downward
c) Horizontally
d) Vertically
5. Find $\lim _{x \rightarrow 2} \frac{x^{2}-4 x}{x+2}$
6. If $Z=x^{2}+3 x y-4 y^{2}$, then $\frac{\partial z}{\partial x}=$

a) $2 x+3 y$	b) $3 x-8 y$	c) $2 x+y$	d) $2+3 x$
$\frac{d \sqrt{x}}{d x}$ is			
a) $2 \sqrt{x}$	b) $\frac{1}{2 \sqrt{x}}$	c) \sqrt{x}	d) $\frac{1}{\sqrt{x}}$

8. For the cost function $C=x\left(x^{2}-2\right)$, the marginal cost when the $\mathrm{x}=2$ is a) 5
b) 10
c) 12
d) 7
9. Which of the following areas can the difference equation be applied?
a) Cob- Web model
b) Harrod Domar model
c) Both a and b
d) None of these
10. What is the order of the differential equation $\frac{d^{2} y}{d x^{2}}-7 \frac{d y}{d x}+8 y=0$?
a) First
b) Second
c) Third
d) None of these
11. The 14 th term of the series $13,17,21,25, \ldots$ is
12. The value of $\int_{-1}^{1}\left(3 x^{2}-4 x^{3}\right) d x$ is
a) 0
b) 1
c) 2
d) None of these
13. Given a function $\mathrm{F}(\mathrm{y}, \mathrm{t})$. Let $\mathrm{M}=\frac{\partial F}{\partial y}$ and $\mathrm{N}=\frac{\partial F}{\partial t}$. Then the exact differential equation is
a) $\mathrm{Mdt}+\mathrm{Ndy}=0$
b) $\mathrm{Mdy}+\mathrm{Ndt}=\mathrm{c}$
c) $M d t+N d y=c$
d) $\mathrm{Mdy}+\mathrm{Ndt}=0$
14. The function $y=-2 x^{3}+4 x^{2}+9 x-10$ is concave when x is equal to
a) 11
b) -5
c) -7
d) 3
15. The finite difference given by $\Delta y_{t+1}-\Delta y_{t}$ is called
a) First finite difference
b) Second finite difference
c) Third finite difference
d) None of these
($15 \times 1 / 5=3$ Weightage)
Part B (Very short answer questions)
Answer any five questions. Each question carries 1 weightage.
16. Define exponential function.
17. Define limit of a function.
18. Show that $\left[\begin{array}{ccc}2 & -1 & 3 \\ -1 & 2 & 1 \\ 3 & 1 & 4\end{array}\right]$ is symmetric.
19. Examine whether the function $y=100-x-2 x^{2}$ is monotonic increasing or decreasing when $X>0$
20. If $y=\frac{x^{2}-1}{x^{2}+1}$, find $\frac{d y}{d x}$
21. Distinguish between implicit and explicit functions.
22. If $D=250-50 p$ and $S=25 p+25$ are demand and supply function calculate equilibrium price.
23. Write down the general formula for first order Linear Differential Equation.
($5 \times 1=5$ Weightage)
Part C (Short answer questions)
Answer any seven questions. Each question carries 2 weightage.
24. A person had deposited ` 20,000 each in two banks, A and B. Both of the banks offer 6 percent rate of interest. However, in bank A interest is compounded annually, while in bank B it is compounded half-yearly. After 3 years what will be the difference in the amount of interest that he may get from bank A and bank B ?
25. Find the inverse of the matrix A where $=\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$
26. Show that $\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|=(a-b)(b-c)(c-a)$
27. Show that $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}5-x, & x \leq 5 \\ 1, & x>5\end{array}\right.$ is discontinuous at $\mathrm{x}=5$
28. Find the first order and second order partial derivatives of

$$
Z=3 x^{3}-2 x y^{2}+2 x^{2} y+y^{3}+8
$$

29. Evaluate $\int x^{2} e^{3 x} d x$
30. Solve $\frac{d y}{d x}+\frac{x}{y}=0$. Also Find particular solution when $\mathrm{x}=2, \mathrm{y}=1$
31. Optimise the function $f(x)=x^{2}-8 x+25$
32. The marginal cost function for a certain product is $\mathrm{MC}=3 q^{2}-4 q+5$. Find the total cost function given the fixed cost is ` ` 100
33. Find the sum of natural numbers in between 200 and 400 which are exactly divisible by 7
($7 \times 2=14$ Weightage)
Part D (Essay questions)
Answer any two questions. Each question carries 4 weightage
34. Find the characteristic equation and characteristic roots of the matrix $\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$
35. A firm has the following total cost and demand functions; $C=\frac{1}{3} Q^{3}-7 Q^{2}+111 Q+50$ and $Q=100-P$. Find profit maximizing level of output. Also find profit at this level of output
36. Integrate the following functions
a) $\int x^{2} e^{3 x} d x$
b) $\int_{0}^{1}\left(3 x^{2}-4 x^{3}\right) d x$
c) $\int x \log x d x$
37. Optimize the function $f(x, y)=x y$ subject to the constraint $\quad x^{2}+y^{2}=8$
($2 \times 4=8$ Weightage)
