19P160A

(Pages: 2

	FIRST SEMESTI	ER M.A. DEGREE EX				
(Supplementary/Im						
		(CUCSS-I				
C	CC15P ECO1 C04 – Q	UANTITATIVE METH				
		(Economi				
Timor	Three Hours	(2015 to 2018 A	3			
Time.	Three Hours	Section	,			
	Answer a	<i>all</i> questions. Each quest				
1.		which each of the diago				
	a) Triangular matrix	_	(
2						
2.	If A is a square matrix with A^{T} = - A, then A					
	a) Symmetric matrix					
	c) Idempotent matrix		(
3.	The characteristic roo	ots of A= $\begin{bmatrix} 3 & 2\\ 1 & 4 \end{bmatrix}$				
	a) 5, 2	b) 1, -3	(
4.	A square matrix A is	said to be idempotent in	f			
	a) A= A ²	b) $A = A^T$	(
5.	The value of the deter	$\operatorname{rminant} \begin{bmatrix} a & 0 & b \\ 0 & b & 0 \\ b & 0 & c \end{bmatrix} \text{ is }$				
	a) abc $-b^3$	b) abc –a ³	(
6.	The rank of the matri	$ x \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 5 & 7 \end{bmatrix} is $				
	a) 0	b) 1	(
7.	The elasticity of supp	ly $p = \frac{3}{x^2}$ is (where p is	t			
	a) 1	b) 2	(
8.	$\frac{d}{dx}\left(\sqrt{x}\right)$ is					
	a) $2\sqrt{x}$	b) $\frac{1}{2\sqrt{x}}$	(
		- • • •				

9. A positively sloped curve moves

a) Upward b) Downward

(1)

s: 3) Nan	ne:					
	.No					
XAMINATION, NOVE	MBER 2019					
/Improvement) S-PG)						
THODS FOR ECONON	IIC ANALYSIS I					
mics)						
Admissions)						
Maxir on A	num: 36 Weightage					
uestion carries ¹ /4 weight	age.					
agonal element is unity is said to be						
c) unit matrix						
A is	<i>a) angona mam</i>					
b) Skew symmetric m	natrix					
d) Nil potent matrix						
d) thi potent matrix						
c) 1,3	d) 1, -2					
t if						
c) $A = -A^T$	d) $A^{P} = 0$					
is						
c) abc $-c^3$	d) None of these					
	,					
c) 2	d) 3					
is the price and x is the	supply)					
c) $\frac{1}{2}$	d) None					
-						
c) \sqrt{x}	d) $\frac{1}{\sqrt{x}}$					
	\sqrt{x}					
c) Horizontally	d) Vertically					
)	Turn Over					

a) 4	b) 5	c) 7	d) 9	
11. Given a supply	function $Q_s = -5 + 3p$	and demand	function $Q_d = 10 - 2p$, the	en the
equilibrium price	is			
a) 2	b) 3	c) 6	d) 5	

12. The value of $\int_0^1 x^2 dx$ is

c) $\frac{1}{q}$ d) $\frac{1}{27}$ a) $\frac{1}{3}$ b) $\frac{1}{2}$

$(12 \text{ x} \frac{1}{4} = 3 \text{ Weightage})$

Section **B**

Answer any *five* questions. Each question carries 1 weightage.

- 13. Define rank of a matrix.
- 14. State Cayley Hamilton theorem.
- 15. Cost function of a firm is given by $C = x(x^2 2)$. Find the marginal cost when the production is 2 units.
- 16. Find the elasticity of demand for the function $y = 100 x x^2$ when y = 70
- 17. Optimise the function $f(x) = x^5 5x^4 + 5x^3 10$
- 18. Find $\int x \log x dx$
- 19. Two cards are drawn from a well shuffled pack of 52 cards. What is the probability that both are spades?
- 20. State the classical definition of probability.

$(5 \times 1 = 5 \text{ Weightage})$

Section C

Answer any *eight* questions. Each question carries 2 weightage.

21. If
$$A = \begin{bmatrix} 3 & 5 & 7 \\ 2 & -3 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$
, Find A^{-1}

- 22. Find the characteristic equation and characteristic roots of the matrix A = $\begin{bmatrix} 1 & 2 & 2 \\ 0 & 2 & 1 \\ -1 & 2 & 2 \end{bmatrix}$
- 23. Show that $A = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ is orthogonal
- 24. If $y = \sqrt{x^2 + 7}$ Find the $\frac{dy}{dx}$
- 25. Find the maximum and minimum values of the function $y = x^3 9x^2 + 15x + 3$
- 26. Find the first order and second order partial derivatives of $Z = 3x^3 2xy^2 + 2x^2y + y^3 + 8$

f(x) = 0, elsewhere, is a probability mass function.

28. Evaluate k if the following is a probability distribution.

$$f(0) = \frac{k}{2}, f(1) = \frac{k}{5}, f(2) = \frac{k}{20}, f(3) = \frac{k}{4} \text{ and}$$

Also find (i) $P(X \le 2)$

- 29. State and prove Bayes theorem of probability.
- 30. A problem in statistics is given to 3 students A, B and C. Their chances of solving the problem are $\frac{1}{2}$, $\frac{1}{4}$ and $\frac{3}{4}$ respectively. Find the probability that the problem is solved.
- produced?

Section D

Write essays on any *three* of the following. Each question carries 4 Weightage 32. Solve the system of equations by Cramer's rule. x + y + z = 6, x + 2y + 3z = 14,

x + y - z = -2

- $\frac{3}{10}$, $\frac{1}{2}$ and $\frac{4}{5}$ respectively. What is the probability that the manager appointed was X given that the bonus scheme is introduced?
- 34. Given $TR = 1400Q 6Q^2$, TC = 1500 + 80Q. Find the profit maximizing level of output.
- 35. A random variable x has the probability density function f(x) = 6x(1-x) for $0 \le x \le 1$. Find the first two moments about mean. Also find the mean and variance 36. Integrate the following functions
 - a) $\int x^2 e^{3x} dx$ b) $\int_0^1 (3x^2 4x) dx$

19P160A

f(x) = k; x = 1, 2, 3, 4, 5, 6 and

nd f(x) = 0 elsewhere.

(ii)
$$P(0 < X < 3)$$

31. If the marginal cost function $MC = 2 + x + x^2$, x being the quantity produced. If the fixed cost is 50 units, find the total cost function. What is the total cost when 50 units are

$(8 \times 2 = 16 \text{ Weightage})$

33. The probabilities of X, Y and Z becoming managers are $\frac{4}{9}$, $\frac{2}{9}$ and $\frac{1}{3}$ respectively. The probability that the bonus scheme will be introduced if X,Y and Z becomes managers are

$$(3 \times 4 = 12 \text{ Weightage})$$