19P160A

Name:...........................
Reg.No..
FIRST SEMESTER M.A. DEGREE EXAMINATION, NOVEMBER 2019 (Supplementary/Improvement) (CUCSS-PG)
CC15P ECO1 C04 - QUANTITATIVE METHODS FOR ECONOMIC ANALYSIS I (Economics)
(2015 to 2018 Admissions)
Time: Three Hours

Section A

Maximum: 36 Weightage

Answer all questions. Each question carries $1 / 4$ weightage

1. A diagonal matrix in which each of the diagonal element is unity is said to be $\begin{array}{lll}\text { a) Triangular matrix } & \text { b) Zero matrix } & \text { c) unit matrix }\end{array}$
d) diagonal matrix
2. If A is a square matrix with $A^{T}=-A$, then A is
a) Symmetric matrix
b) Skew symmetric matrix
c) Idempotent matrix
d) Nil potent matrix
3. The characteristic roots of $A=\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right]$
a) 5,2
b) $1,-3$
c) 1,3
d) $1,-2$
4. A square matrix A is said to be idempotent if
a) $\mathrm{A}=\mathrm{A}^{2}$
b) $\mathrm{A}=\mathrm{A}^{\mathrm{T}}$
c) $A=-A^{T}$
d) $\mathrm{A}^{\mathrm{P}}=0$
5. The value of the determinant $\left[\begin{array}{lll}a & 0 & b \\ 0 & b & 0 \\ b & 0 & c\end{array}\right]$ is
a) $a b c-b^{3}$
b) $a b c-a^{3}$
c) $a b c-c^{3}$
d) None of these
6. The rank of the matrix $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 5 & 7\end{array}\right]$ is
a) 0
b) 1
c) 2
d) 3
7. The elasticity of supply $p=\frac{3}{x^{2}}$ is (where p is the price and x is the supply)
a) 1
b) 2
c) $\frac{1}{2}$
d) None
8. $\frac{d}{d x}(\sqrt{x})$ is
a) $2 \sqrt{x}$
b) $\frac{1}{2 \sqrt{x}}$
c) \sqrt{x}
d) $\frac{1}{\sqrt{x}}$
9. A positively sloped curve moves
a) Upward
b) Downward
c) Horizontally
d) Vertically
10. The function $\mathrm{y}=3 \mathrm{x}^{2}-14 \mathrm{x}+5$ is increasing when x is equal to
a) 4
b) 5
c) 7
d) 9
11. Given a supply function $\mathrm{Q}_{s}=-5+3 \mathrm{p}$ and demand function $\mathrm{Q}_{d}=10-2 \mathrm{p}$, then the equilibrium price is
a) 2
b) 3
c) 6
d) 5
12. The value of $\int_{0}^{1} x^{2} d x$ is
a) $\frac{1}{3}$
b) $\frac{1}{2}$
c) $\frac{1}{9}$
d) $\frac{1}{27}$
($12 \times 1 / 4=3$ Weightage)

Section B

Answer any five questions. Each question carries 1 weightage.
13. Define rank of a matrix.
14. State Cayley Hamilton theorem
15. Cost function of a firm is given by $C=x\left(x^{2}-2\right)$. Find the marginal cost when the production is 2 units.
16. Find the elasticity of demand for the function $y=100-x-x^{2}$ when $y=70$
17. Optimise the function $f(x)=x^{5}-5 x^{4}+5 x^{3}-10$
18. Find $\int x \log x d x$
19. Two cards are drawn from a well shuffled pack of 52 cards. What is the probability that both are spades?
20. State the classical definition of probability.
($5 \times 1=5$ Weightage)

Section C

Answer any eight questions. Each question carries 2 weightage.
21. If $A=\left[\begin{array}{ccc}3 & 5 & 7 \\ 2 & -3 & 1 \\ 1 & 1 & 2\end{array}\right]$, Find A^{-1}
22. Find the characteristic equation and characteristic roots of the matrix $A=\left[\begin{array}{ccc}1 & 2 & 2 \\ 0 & 2 & 1 \\ -1 & 2 & 2\end{array}\right]$
23. Show that $A=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$ is orthogonal
24. If $y=\sqrt{x^{2}+7}$ Find the $\frac{d y}{d x}$
25. Find the maximum and minimum values of the function $y=x^{3}-9 x^{2}+15 x+3$
26. Find the first order and second order partial derivatives of $Z=3 x^{3}-2 x y^{2}+2 x^{2} y+y^{3}+8$
27. Define a random variable. Evaluate k if $\mathrm{f}(\mathrm{x})=\mathrm{k} ; \mathrm{x}=1,2,3,4,5,6$ and
$f(x)=0$, elsewhere, is a probability mass function.
28. Evaluate k if the following is a probability distribution.

$$
f(0)=\frac{k}{2}, f(1)=\frac{k}{5}, f(2)=\frac{k}{20}, f(3)=\frac{k}{4} \text { and } f(x)=0 \text { elsewhere. }
$$

Also find
(i) $P(X \leq 2)$
(ii) $\mathrm{P}(0<X<3)$
29. State and prove Bayes theorem of probability.
30. A problem in statistics is given to 3 students A, B and C. Their chances of solving the problem are $\frac{1}{2}, \frac{1}{4}$ and $\frac{3}{4}$ respectively. Find the probability that the problem is solved.
31. If the marginal cost function $M C=2+x+x^{2}, x$ being the quantity produced. If the fixed cost is 50 units, find the total cost function. What is the total cost when 50 units are produced?
($8 \times 2=16$ Weightage $)$

Section D

Write essays on any three of the following. Each question carries 4 Weightage
32. Solve the system of equations by Cramer's rule. $x+y+z=6, x+2 y+3 z=14$

$$
x+y-z=-2
$$

33. The probabilities of X, Y and Z becoming managers are $\frac{4}{9}, \frac{2}{9}$ and $\frac{1}{3}$ respectively. The probability that the bonus scheme will be introduced if X, Y and Z becomes managers are $\frac{3}{10}, \frac{1}{2}$ and $\frac{4}{5}$ respectively. What is the probability that the manager appointed was X given that the bonus scheme is introduced?
34. Given $T R=1400 Q-6 Q^{2}, T C=1500+80 Q$. Find the profit maximizing level of output.
35. A random variable x has the probability density function $\mathrm{f}(\mathrm{x})=6 \mathrm{x}(1-\mathrm{x})$ for $0 \leq x \leq 1$. Find the first two moments about mean. Also find the mean and variance
36. Integrate the following functions
a) $\int x^{2} e^{3 x} d x$
b) $\int_{0}^{1}\left(3 x^{2}-4 x^{3}\right) d x$
c) $\int x \log x d x$
($\mathbf{3} \times 4=12$ Weightage)
