\qquad

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2019

(Supplementary/Improvement) (CUCSS-PG)

CC15P MT1 C05/CC17P MT1 C05 - DISCRETE MATHEMATICS

(Mathematics)
(2015 to 2018 Admissions)
Time: Three Hours
Maximum: 36 Weightage

Part A

Answer all questions. Each question carries 1 weightage.

1. Define totally ordered set with example.
2. Is there a Boolean algebra with 9 elements? Justify your answer.
3. Prepare the table of values of the following function $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}{ }^{\prime} x_{2}\left(x_{1}{ }^{\prime}+x_{2}+x_{1}\right)$
4. Let $(X,+, ., \prime)$ be a finite Boolean algebra, then prove that every two distinct atoms of X are mutually disjoint.
5. Prove that in any graph G , the number of vertices of odd degree is even.
6. Define dual of a graph. Draw the dual graph of C_{5}
7. Prove that a connected graph G is a tree if and only if every edge of G is a cut edge of G
8. Find $k(G), \lambda(G) \& \delta(G)$ where $G=K_{5}$
9. Prove that a graph is planar if and only if it is embeddable on a sphere.
10. Prove that the Petersen graph is nonplanar.
11. Prove or disprove: Let G be a simple connected graph with $n(G) \geq 3$, then G has a cut edge if and only if G has a cut vertex.
12. Differentiate between Dfa and Nfa.
13. Show that the language $\mathrm{L}=\left\{a w a / w \in\{a, b\}^{*}\right\}$ is regular.
14. Let $\mathrm{G}(\{S\},\{a, b\}, S, P$,$) be a grammar with productions \mathrm{P}$ given by $\mathrm{S} \rightarrow \mathrm{aA}, \mathrm{A} \rightarrow \mathrm{bS}$, $S \rightarrow \lambda$. Give a simple description of the language generated by G
($14 \times 1=14$ Weightage)

Part B

Answer any seven questions. Each question carries 2 weightage.
15. Find the DNF and CNF of the Boolean function $f(a, b, c)=a+b+c^{\prime}$
16. Let ($\mathrm{X},+, .$,) is a finite Boolean algebra then prove that the relation \leq defined by $x \leq y$ if $x \cdot y^{\prime}=0$ makes the underlying set of Boolean algebra into a lattice. Moreover 0 and 1 are the minimum and maximum elements of this lattice.
17. Prove that the number of edges in a tree with n vertices is $n-1$. Conversely, a connected graph with n vertices and $n-1$ edges is a tree.
18. State and prove Euler's formula.
19. Prove that $K_{3,3}$ is nonplanar.
20. Prove that in a graph an edge is a cut edge if and only if it belongs to no cycle.
21. Prove that every connected graph contains a spanning tree.
22. Construct the DFA of all strings ending with aab, where $\sum=\{a, b\}$
23. Prove that $(U V)^{R}=U^{R} V^{R}$ for all strings U, V and of any length.
24. Find the grammar that generates $\mathrm{L}=\left\{a^{n} b^{n+1} ; n \geq 0\right\}$

Part C

Answer any two Questions. Each question carries 4 weightage.
25. Prove that a graph is bipartite if, and only if, it contains no odd cycles.
26. Let L be the language accepted by a NFA $M_{N}=\left(Q_{N}, \sum \delta_{N}, q_{0}, F_{N}\right)$. Prove that there exist a DFA $M_{D}=\left(Q_{D}, \sum \delta_{D}, q_{0}, F_{D}\right)$ such that $L=L\left(M_{D}\right)$
27. For a connected graph G, prove that the following statements are equivalent:
(a) G is Eulerian.
(b) The degree of each vertex of G is an even positive integer.
(c) G is an edge-disjoint union of cycles.
28. a) Let (X, \leq) be a poset and A be a non-empty finite subset of X . Prove that A has at least one maximal element.
b) Let $(X,+, ., ')$ be a Boolean algebra. Prove that $x+x . y=x$ for all $x, y \in X$

