19P102A
CC15P MT1 C02/CC17P MT1 C02 - LINEAR ALGEBRA (Mathematics)
(2015 to 2018 Admissions)

Time: Three Hours
Maximum: 36 Weightage

Part A

Answer all questions. Each question carries 1 weightage

1. Prove that the only subspaces of \mathbb{R}^{1} are \mathbb{R}^{1} and the zero subspace.
2. Prove that any subset of a linearly independent set is linearly independent.
3. Let W be the set of matrices of the form $\left[\begin{array}{rr}x & -x \\ y & z\end{array}\right]$, where x, y, z are elements of a field F. Find $\operatorname{dim} W$. Justify your answer.
4. Find the coordinates of the vector $(2,3)$ of \mathbb{R}^{2} with respect to the basis $\mathfrak{B}=\{(1,1),(1,2)\}$.
5. Find two linear operators T and U on \mathbb{R}^{2} such that $T U=0$ but $U T \neq 0$.
6. Describe explicitly an isomorphism from the space of complex numbers over the Real field onto the space \mathbb{R}^{2}.
7. Let V and W be vector spaces over the field F, and let T be a linear transformation from V into W. Prove that the null space of T^{t} is the annihilator of the range of T.
8. If f is a non-zero linear functional on a finite dimensional vector space V over a field F , then prove that the null space N_{f} is a hyper space of V.
9. Let F be a field and let f be the linear functional on F^{2} defined by $f(x, y)=a x+b y$. For the linear operator $T(x, y)=(-y, x)$ and let $g=T^{t} f$. Find $g(x, y)$.
10 . Find a 3×3 matrix for which the minimal polynomial is x^{2}.
10. Let T be the linear operator on \mathbb{R}^{2}, the matrix of which in the standard ordered basis is $\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$. Prove that the only subspaces of \mathbb{R}^{2} invariant under T are \mathbb{R}^{2} and the zero space.
11. Prove that any projection is diagonalizable.
12. State and prove Cauchy-Schwarz inequality in an inner product space.
$(1,2,3)$ on the subspace W that is spanned by the vector $(3,2,1)$.

($14 \times 1=14$ Weightage)

Part B

Answer any seven questions. Each question carries 2 weightage.
15. Let V be an n-dimensional vector space over the field F, and let \mathfrak{B} and \mathfrak{B}^{\prime} be two ordered bases of V. Then prove that there is a unique, necessarily invertible, $n \times n$ matrix P with entries in F such that (i) $[\alpha]_{\mathfrak{B}}=P[\alpha]_{\mathfrak{B}^{\prime}}$ (ii) $[\alpha]_{\mathfrak{B}^{\prime}}=P^{-1}[\alpha]_{\mathfrak{B}}$ for every vector α in V.
16. Let V be the vector space of all functions from \mathbb{R} into \mathbb{R}; let V_{e} be the subset of even functions, $f(-x)=f(x)$; let V_{0} be the subset of odd functions $f(-x)=-f(x)$. Prove that (i) V_{e} and V_{0} are subspaces of V
(ii) $V_{e} \oplus V_{0}=V$.
17. Let T be a linear transformation from V into W. Prove that T is non-singular if and only if T carries each linearly independent subset of V onto a linearly independent subset of W.
18. Let V be a finite-dimensional vector space over the field F, and let $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ be a basis for V. Prove that there is a unique dual basis $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ for the dual space such that $f_{i}\left(\alpha_{j}\right)=\delta_{i j}$ and for each linear functional f on V we have $f=\sum_{i=1}^{n} f\left(\alpha_{i}\right) f_{i}$ and for each vector α in V we have $\alpha=\sum_{i=1}^{n} f_{i}(\alpha) \alpha_{i}$.
19. Prove that the double dual space of a vector space V is isomorphic to the space itself.
20. Let A is a $m \times n$ matrix over the field F. Prove that the row rank of A is equal to the column rank of A.
21. Let T be the linear operator on \mathbb{R}^{3} which is represented in the standard ordered basis by the matrix $\left[\begin{array}{ccc}5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4\end{array}\right]$. Find the characteristic and minimal polynomials of T.
22. Let T be a linear operator on V and let U be any operator on V which commutes with T. Prove that the range and null space of U are invariant under T.
23. Find a projection E which projects \mathbb{R}^{2} onto the subspace spanned by $(1,-1)$ along the subspace spanned by $(1,2)$.
24. Let W be a subspace of an inner product space V and let β be a vector in V. Prove that the vector α in W is a best approximation to β by vectors in W if and only if $\beta-\alpha$ is orthogonal to every vectors in W.
($7 \times 2=14$ Weightage)

Part C

Answer any two questions. Each question carries 4 weightage.
25. (a) Prove that in a finite dimensional vector space V every non-empty linearly independent set of vectors is part of a basis.
(b) Find three vectors in \mathbb{R}^{3} which are linearly dependent, and are such that any two of them are linearly independent.
26. (a) Let V be an n-dimensional vector space over the field F, and let W be an m dimensional vector space over F. Prove that the space of linear transformation $L(V, W)$ is finite dimensional and has dimension $m n$.
(b) Let F be a field and let T be the linear operator on F^{2} defined by $T(x, y)=(x+y, x)$. Prove that T is invertible and find T^{-1}.
27. (a) Let V be a finite dimensional vector space over the field F and let T be a linear operator on V. Prove that T is diagonalizable if and only if the minimal polynomial for T has distinct roots.
(b) What is the minimal polynomial for the identity operator on V ? What is the minimal polynomial for the zero operator on V ?
28. Let W be a finite dimensional subspace of an inner product space V and let E be the orthogonal projection of V on W. Prove that
(a) E is a linear transformation of V onto W.
(b) E is an idempotent.
(c) W^{\perp} is the null space of E.
(d) $V=W \oplus W^{\perp}$
(e) $I-E$ is the orthogonal projection of V on W^{\perp}.
(f) $I-E$ is an idempotent linear transformation of V onto W^{\perp} with null space W.

