\qquad

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2019

(Supplementary/Improvement) (CUCSS-PG) CC17P MT1 C04 - NUMBER THEORY
(Mathematics)
(2017 \& 2018 Admissions)
Time: Three Hours

Maximum: 36 Weightage

Part A

Answer all questions. Each question carries 1 weightage.

1. If $n \geq 1$, prove that $\sum_{d / n} \mu(d)=\left[\frac{1}{n}\right]$
2. Prove that $\varphi(n)$ is even for $n \geq 3$
3. Prove that for all $\geq 1, \log n=\sum_{d / n} \Lambda(d)$
4. Prove that Dirichlet product of two multiplicative functions is multiplicative.
5. Prove that the number of positive divisors of n is odd if and only if n is a square.
6. For any arithmetical functions α and β and for any real or complex valued function F on $(0, \infty)$ such that $F(x)=0$ for $0<x<1$, prove that $\alpha \circ(\beta \circ F)=(\alpha * \beta) \circ F$
7. Prove that $\forall x \geq 1, \sum_{n \leq x} \Lambda(n)\left[\frac{x}{n}\right]=\log ([x]!)$
8. Define Chebyshev's ψ - function and ϑ-function and prove that $\psi(x)=\sum_{m \leq x} \vartheta\left(x^{\frac{1}{m}}\right)$
9. Find the quadratic residues and non residues modulo 19
10. Calculate the highest power of 21 that divides 1000 !
11. Describe about shift cryptosystem and find a formula for the number of different shift transformations with an N-letter alphabet.
12. Write a note on authentication in public key cryptosystem.
13. Find the cipher text of 'DECEMBER' in the affine cryptosystem with enciphering key $(7,3)$ in the 26 letter alphabet.
14. Find the inverse of $A=\left[\begin{array}{ll}2 & 3 \\ 7 & 8\end{array}\right](\bmod 26)$

$$
(14 \times 1=14 \text { Weightage })
$$

Part B

Answer any seven questions. Each question carries 2 weightage.
15. If f is a multiplicative arithmetical function and $f^{-1}(n)=\mu(n) f(n), \forall n \geq 1$, then prove that f is completely multiplicative.
16. State and prove the Selberg identity.
17. For all $x \geq 1$, prove that $\left|\sum_{n \leq x} \frac{\mu(n)}{n}\right| \leq 1$
18. If $n \geq 1$, prove that $\sum_{n \leq x} \frac{1}{n}=\log x+C+O\left(\frac{1}{x}\right)$, where C is the Euler's constant.
19. Prove that $\lim _{x \rightarrow \infty}\left(\frac{M(x)}{x}-\frac{H(x)}{x \log x}\right)=0$
20. State and prove Gauss lemma.
21. Let p be an odd prime. Prove that $\sum_{r=1}^{p-1} r(r \mid p)=0$ if $p \equiv 1(\bmod 4)$
22. Prove that the Diophantine equation $y^{2}=x^{3}+k$ has no solutions if k has the form $k=(4 n-1)^{3}-4 m^{2}$ where m and n are integers such that no prime $p \equiv-1(\bmod 4)$ divides m.
23. Solve the system of simultaneous congruences
$x+3 y \equiv 1(\bmod 26)$
$7 x+y \equiv 1(\bmod 26)$
24. (i) Describe about RSA cryptosystem.
(ii) How to send a digital signature in RSA cryptosystem?
($7 \times 2=14$ Weightage)

Part C

Answer any two questions. Each question carries 4 weightage.
25. Prove that if both g and $f * g$ are multiplicative then f is also multiplicative and hence show that the set of all multiplicative functions is a subgroup of the group of all arithmetical functions f with $f(1) \neq 0$
26. If a and b are positive real numbers such that $a b=x$, then for any arithmetical functions f and g, prove that

$$
\begin{aligned}
& \quad \sum_{\substack{q, d \\
q d \leq x}} f(d) g(q)=\sum_{n \leq a} f(n) G\left(\frac{x}{n}\right)+\sum_{n \leq b} g(n) F\left(\frac{x}{n}\right)-F(a) G(b) \text { where } \\
& F(x)=\sum_{n \leq x} f(n) \text { and } G(x)=\sum_{n \leq x} g(n)
\end{aligned}
$$

27. State Abel's Identity and deduce Euler's Summation formula from Abel's identity.
28. If p is an odd positive integer show that $(-1 \mid p)=(-1)^{\frac{p-1}{2}}$ and $(2 \mid p)=(-1)^{\frac{p^{2}-1}{8}}$

$$
(2 \times 4=8 \text { Weightage })
$$

