(Pages: 2)

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2019 (CUCSS PG) CC19P MTH1 C01 - ALGEBRA-I

(Mathematics)

(2019 Admission Regular)

Time: Three Hours

Maximum: 30 Weightage

PART A

Answer *all* questions. Each question carries 1 weightage.

- 1. Are the groups $\mathbb{Z}_2 \times \mathbb{Z}_{12}$ and $\mathbb{Z}_4 \times \mathbb{Z}_6$ isomorphic? Justify.
- 2. Find the order of $(\mathbb{Z}_{12} \times \mathbb{Z}_{18}) / < (4,3) >$
- 3. \mathbb{R} / \mathbb{Z} under addition has no element of order 2. Justify.
- 4. Give isomorphic refinements of $\{0\} < 60 \mathbb{Z} < 20 \mathbb{Z} < \mathbb{Z}$ and $\{0\} < 245\mathbb{Z} < 49 \mathbb{Z} < \mathbb{Z}$
- 5. Show that every group of order 45 has a normal subgroup of order 9
- 6. Find all zeros of $x^5 + 3x^3 + x^2 + 2x$ in \mathbb{Z}_5
- 7. If F is a field then F[x] is a field. Justify.
- 8. Is $f(x) = x^2 + 8x 2$ irreducible over \mathbb{Q} ?

 $(8 \times 1 = 8 \text{ Weightage})$

PART-B

Answer any *two* questions from each unit. Each question carries 2 weightage.

UNIT 1

- 9. Show that if m divides the order of a finite abelian group G then G has a subgroup of order m.
- 10. Show that M is a maximal normal subgroup of G if and only if G\M is simple. List the maximal normal subgroups of \mathbb{Z}_8 with respect to addition modulo 8.
- 11. Prove that $|G_x| = (G: G_x)$ where X is a G- set and $x \in X$

UNIT 2

- 12. State and prove third Sylow theorem.
- 13. Show that every group of order 255 is abelian.
- 14. Define solvable group. Is S_3 solvable? Justify.

19P101

UNIT 3

15. Show that the polynomial $\Phi_p(x) = \frac{x^{p-1}}{x-1}$ is irreducible over \mathbb{Q} for any prime p

- 16. Prove that if G is a finite subgroup of the multiplicative group $\langle F^*, \cdot \rangle$ of a field F then G is cyclic.
- 17. Give the addition and multiplication table for the group algebra $\mathbb{Z}_2 G$ where $G = \{e, a\}$ (6 × 2 = 12 weightage)

PART C

Answer any two questions. Each question carries 5 weightage.

- 18. (a) State and prove Burnsides' formula.
 - (b) How many distinguishable necklaces (with no clasp) can be made using seven different colored beads of the same size?
- 19. (a) Prove that if G is a group of order p^n and X is a finite G-set, then $|X| \equiv |X_G| \mod p$ (b) State and prove Cauchy's theorem.
- 20. (a) State and prove Eisenstein criterion.

(b) Verify whether $8x^3 + 6x^2 - 9x + 24$ is irreducible over \mathbb{Q}

21. Determine all subgroups of order 10 up to isomorphism.

 $(2 \times 5 = 10 \text{ Weightage})$
