Name:
Reg. No.
FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2019 (CUCSS PG)
CC19P MTH1 C01 - ALGEBRA-I
(Mathematics)
(2019 Admission Regular)
Time: Three Hours
PART A
Answer all questions. Each question carries 1 weightage.

1. Are the groups $\mathbb{Z}_{2} \times \mathbb{Z}_{12}$ and $\mathbb{Z}_{4} \times \mathbb{Z}_{6}$ isomorphic? Justify.
2. Find the order of $\left(\mathbb{Z}_{12} \times \mathbb{Z}_{18}\right) /<(4,3)>$
3. \mathbb{R} / \mathbb{Z} under addition has no element of order 2 . Justify.
4. Give isomorphic refinements of $\{0\}<60 \mathbb{Z}<20 \mathbb{Z}<\mathbb{Z}$ and $\{0\}<245 \mathbb{Z}<49 \mathbb{Z}<\mathbb{Z}$
5. Show that every group of order 45 has a normal subgroup of order 9
6. Find all zeros of $x^{5}+3 x^{3}+x^{2}+2 x$ in \mathbb{Z}_{5}
7. If F is a field then $\mathrm{F}[\mathrm{x}]$ is a field. Justify.
8. Is $f(x)=x^{2}+8 x-2$ irreducible over \mathbb{Q} ?

$$
(8 \times 1=8 \text { Weightage })
$$

PART- B

Answer any two questions from each unit. Each question carries 2 weightage.

UNIT 1

9. Show that if m divides the order of a finite abelian group G then G has a subgroup of order m.
10. Show that M is a maximal normal subgroup of G if and only if $G \backslash M$ is simple. List the maximal normal subgroups of \mathbb{Z}_{8} with respect to addition modulo 8 .
11. Prove that $|G x|=\left(G: G_{x}\right)$ where X is a G- set and $x \in X$

UNIT 2

12. State and prove third Sylow theorem.
13. Show that every group of order 255 is abelian.
14. Define solvable group. Is S_{3} solvable? Justify.

UNIT 3

15. Show that the polynomial $\Phi_{p}(x)=\frac{x^{p}-1}{x-1}$ is irreducible over \mathbb{Q} for any prime p
16. Prove that if G is a finite subgroup of the multiplicative group $\left\langle F^{*}, \cdot\right\rangle$ of a field F then G is cyclic.
17. Give the addition and multiplication table for the group algebra $\mathbb{Z}_{2} G$ where $G=\{e, a\}$

$$
(6 \times 2=12 \text { weightage })
$$

PART C

Answer any two questions. Each question carries 5 weightage.
18. (a) State and prove Burnsides' formula.
(b) How many distinguishable necklaces (with no clasp) can be made using seven different colored beads of the same size?
19. (a) Prove that if G is a group of order p^{n} and X is a finite G-set, then $|X| \equiv\left|X_{G}\right| \bmod p$
(b) State and prove Cauchy's theorem.
20. (a) State and prove Eisenstein criterion.
(b) Verify whether $8 x^{3}+6 x^{2}-9 x+24$ is irreducible over \mathbb{Q}
21. Determine all subgroups of order 10 up to isomorphism.

$$
(2 \times 5=10 \text { Weightage })
$$

