\qquad

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2019

(CUCSS PG)

CC19P MTH1 C02 - LINEAR ALGEBRA
(Mathematics)
(2019 Admission Regular)

Maximum: 30 Weightage

PART A (Short Answer questions)
Answer all questions. Each question carries 1 weightage.

1. Is the vector $(3,-1,0,-1)$ in the subspace of R^{4} spanned by the vectors $(2,-1,3,2)$, $(-1,1,2,-3)$ and $(-1,1,9,-5)$? Justify.
2. Show that the vectors $(1,1,0,0),(0,0,1,1),(1,0,0,4)$ and $(0,0,0,2)$ form a basis for R^{4}.
3. If T is a linear operator on C^{3} for which $\mathrm{T} \varepsilon_{1}=(1,0, \mathrm{i}), \mathrm{T} \varepsilon_{2}=(0,1,1), \mathrm{T} \varepsilon_{3}=(\mathrm{i}, 1,0)$. Is T invertible. Give reason.
4. T is a linear operator on C^{2} defined by $\mathrm{T}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\left(\mathrm{x}_{1}, 0\right)$. Let $\mathrm{B}^{\prime}=\{(1, i),(-i, 2)\}$ be an ordered basis. What is the matrix of T in this ordered basis B^{\prime} ?.
5. Prove that similar matrices have the same characteristic polynomials. .
6. Let F be a field and f be the linear functional on F^{2} defined by $f(x, y)=3 x-2 y$. Write an expression for $\left(T^{t} f\right)(x, y)$ if $T(x, y)=(x-y, 2 x)$.
7. Find out the characteristic values of an $n \times n$ triangular matrix.
8. Let R be the range of projection E then $\beta \in R$ if and only if $E \beta=\beta$
($8 \times 1=8$ Weightage $)$

PART B

Answer any two questions from each unit. Each question carries 2 weightage.

UNIT I

9. Let V be the space of all polynomial functions from R into R which have degree less than or equal to 2. Let t be a fixed real number, define $g_{i}(x)=(x+t)^{i-1}, i=1,2,3$. Prove that $B=\left\{g_{1}, g_{2}, g_{3}\right\}$ is a basis for V. If $\mathrm{f}(\mathrm{x})=\mathrm{c}_{0}+\mathrm{c}_{1} \mathrm{x}+\mathrm{c}_{2} \mathrm{x}^{2}$, what are the coordinates of f in the ordered basis B ?
10. Let V and W be vector spaces over the field F and let T be a linear transformation from V into W. If V is finite dimensional, prove that $\operatorname{rank}(T)+$ nullity $(T)=\operatorname{dim} V$
11. Show that every n-dimensional vector space over the field is isomorphic to the space F^{n}

UNIT II

12. Let V be finite dimensional vector space and let $B=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ and $B^{\prime}=\left\{\alpha_{1}{ }^{\prime}, \ldots, \alpha_{n}{ }^{\prime}\right\}$ be ordered bases for V. Suppose T is a linear operator on V. If $P=\left[P_{1}, \ldots, P_{n}\right]$ is the $n \times n$ matrix with columns $P_{j}=\left[\alpha_{j}^{\prime}\right]_{B}$ then show that $[T]_{B^{\prime}}=P^{-1}[T]_{B} P$
13. Let V be a finite dimensional vector space over the field F. For each vector α in V, define $L_{\alpha}(f)=f(\alpha), f \in V^{*}$. Prove that the mapping $\alpha \rightarrow L_{\alpha}$ is an isomorphism of V onto $V^{* *}$
14. Let V be a finite dimensional vector space over the field F and T be a linear operator on V. Prove that T is diagonalizable if and only if the minimal polynomial for T has the form $p=\left(x-c_{1}\right) \ldots \ldots \ldots .\left(x-c_{k}\right)$ where c_{1}, \ldots, c_{k} are distinct elements of F

UNIT III

15. Let V be an inner product space W a finite subspace of V and E is the orthogonal projection of V on W then prove that the mapping $\beta \rightarrow \beta-E_{\beta}$ is an orthogonal projection of V on W^{\perp}
16. If $V=W_{1} \oplus \ldots \ldots \oplus W_{k}$, then prove that there exist k linear operators $E_{1}, \ldots \ldots, E_{k}$ on V such that
i) each E_{i} is a projection
ii) $E_{i} E_{j}=0$, if $i \neq j$
iii) $I=E_{1}+\ldots \ldots+E_{k}$
iv) The range of E_{i} is W_{i}
17. State and prove Bessel's inequality.
($6 \times 2=12$ Weightage)

PART C

Answer any two questions. Each question carries 5 weightage.
18. Let V and W be finite dimensional vector spaces over F such that $\operatorname{dim} V=\operatorname{dim} W$. If T is a linear transformation from V into W, prove that the following are equivalent:
(i) T is invertible
(ii) T is non-singular
(iii) T is onto
(iv) If $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ is a basis for V then $\left\{T \alpha_{1}, \ldots, T \alpha_{n}\right\}$ is a basis for W
(v) There is some basis $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ for V such that $\left\{T \alpha_{1}, \ldots, T \alpha_{n}\right\}$ is a basis for W
19. (a) If S is any subset of V, prove that $\left(S^{0}\right)^{0}$ is the subspace spanned by S
(b) Let T be a linear operator on the finite dimensional space V. Let $c_{1}, \ldots \ldots, c_{k}$ be the distinct characteristic values of T and let W_{i} be the characteristic space associated with the value c_{i}. If $W=W_{1}+\ldots \ldots+W_{k}$, prove that $\operatorname{dim} W=\operatorname{dim} W_{1}+\ldots \ldots \ldots+\operatorname{dim} W_{k}$.
20. Let T be a linear operator on an n-dimensional vector space V. Prove that the characteristic and minimal polynomials for T have the same roots, except for multiplicities. Find the minimal polynomial for T represented in the standard ordered basis by the matrix

$$
\left[\begin{array}{rrr}
5 & -6 & -6 \\
-1 & 4 & 2 \\
3 & -6 & -4
\end{array}\right]
$$

21. (a) Explain Gram-Schmidt Orthogonalization process
(b) Consider the vectors $\beta_{1}=(3,0,4), \beta_{2}=(-1,0,7), \beta_{3}=(2,9,11)$ in R^{3} with standard inner product. Find an orthogonal basis for R^{3}
