(Pages: 2)

Name: Reg. No.....

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2019 (CUCSS PG)

CC19P MTH1 C02 – LINEAR ALGEBRA

(Mathematics)

(2019 Admission Regular)

Time: Three Hours

Maximum: 30 Weightage

PART A (Short Answer questions)

Answer all questions. Each question carries 1 weightage.

- 1. Is the vector (3, -1, 0, -1) in the subspace of R^4 spanned by the vectors (2, -1, 3, 2), (-1, 1, 2, -3) and (-1, 1, 9, -5)? Justify.
- 2. Show that the vectors (1, 1, 0, 0), (0, 0, 1, 1), (1, 0, 0, 4) and (0, 0, 0, 2) form a basis for R⁴.
- 3. If T is a linear operator on C^3 for which $T\varepsilon_1 = (1, 0, i)$, $T\varepsilon_2 = (0, 1, 1)$, $T\varepsilon_3 = (i, 1, 0)$. Is T invertible. Give reason.
- 4. T is a linear operator on C² defined by $T(x_1, x_2) = (x_1, 0)$. Let B' = {(1, *i*), (-*i*, 2)} be an ordered basis. What is the matrix of *T* in this ordered basis B'?.
- 5. Prove that similar matrices have the same characteristic polynomials.
- 6. Let *F* be a field and *f* be the linear functional on F^2 defined by f(x, y) = 3x 2y. Write an expression for $(T^t f)(x, y)$ if T(x, y) = (x y, 2x).
- 7. Find out the characteristic values of an $n \times n$ triangular matrix.
- 8. Let R be the range of projection E then $\beta \in R$ if and only if $E\beta = \beta$

$(8 \times 1 = 8 \text{ Weightage})$

PART B

Answer any two questions from each unit. Each question carries 2 weightage.

UNIT I

- 9. Let V be the space of all polynomial functions from R into R which have degree less than or equal to 2. Let t be a fixed real number, define g_i(x) = (x + t)ⁱ⁻¹, i = 1, 2, 3. Prove that B = {g₁, g₂, g₃} is a basis for V. If f(x) = c₀ + c₁x + c₂x², what are the coordinates of f in the ordered basis B?
- 10. Let V and W be vector spaces over the field F and let T be a linear transformation from V into W. If V is finite dimensional, prove that rank(T) + nullity(T) = dim V
- 11. Show that every *n*-dimensional vector space over the field is isomorphic to the space F^n

UNIT II

12. Let *V* be finite dimensional vector space and let $B = \{\alpha_1, ..., \alpha_n\}$ and $B' = \{\alpha_1', ..., \alpha_n'\}$ be ordered bases for *V*. Suppose *T* is a linear operator on *V*. If $P = [P_1, ..., P_n]$ is the $n \times n$ matrix with columns $P_j = [\alpha'_j]_B$ then show that $[T]_{B'} = P^{-1}[T]_B P$

- 13. Let *V* be a finite dimensional vector space over the field *F*. For each vector α in *V*, define $L_{\alpha}(f) = f(\alpha), f \in V^*$. Prove that the mapping $\alpha \to L_{\alpha}$ is an isomorphism of *V* onto V^{**}
- 14. Let V be a finite dimensional vector space over the field F and T be a linear operator on V. Prove that T is diagonalizable if and only if the minimal polynomial for T has the form $p = (x - c_1) \dots \dots \dots (x - c_k)$ where c_1, \dots, c_k are distinct elements of F

UNIT III

- 15. Let V be an inner product space W a finite subspace of V and E is the orthogonal projection of V on W then prove that the mapping $\beta \rightarrow \beta - E_{\beta}$ is an orthogonal projection of V on W^{\perp}
- 16. If $V = W_1 \oplus \dots \oplus W_k$, then prove that there exist k linear operators E_1, \dots, E_k on V such that
 - i) each E_i is a projection
- ii) $E_i E_j = 0$, if $i \neq j$
- iii) $I = E_1 + \dots + E_k$ iv) The range of E_i is W_i
- 17. State and prove Bessel's inequality.

(6 x 2 = 12 Weightage)

PART C

Answer any two questions. Each question carries 5 weightage.

- 18. Let *V* and *W* be finite dimensional vector spaces over *F* such that dim $V = \dim W$. If *T* is a linear transformation from *V* into *W*, prove that the following are equivalent:
 - (i) T is invertible (ii) T is non-singular (iii) T is onto
 - (iv) If $\{\alpha_1, ..., \alpha_n\}$ is a basis for V then $\{T\alpha_1, ..., T\alpha_n\}$ is a basis for W
 - (v) There is some basis $\{\alpha_1, ..., \alpha_n\}$ for V such that $\{T\alpha_1, ..., T\alpha_n\}$ is a basis for W
- 19. (a) If S is any subset of V, prove that $(S^0)^0$ is the subspace spanned by S
 - (b) Let *T* be a linear operator on the finite dimensional space *V*. Let c_1, \ldots, c_k be the distinct characteristic values of *T* and let W_i be the characteristic space associated with the value c_i . If $W = W_1 + \ldots + W_k$, prove that $\dim W = \dim W_1 + \ldots + \dim W_k$.
- 20. Let T be a linear operator on an n-dimensional vector space V. Prove that the characteristic and minimal polynomials for T have the same roots, except for multiplicities. Find the minimal polynomial for T represented in the standard ordered basis by the matrix

$$\begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{bmatrix}$$

- 21. (a) Explain Gram-Schmidt Orthogonalization process
 - (b) Consider the vectors $\beta_1 = (3, 0, 4)$, $\beta_2 = (-1, 0, 7)$, $\beta_3 = (2, 9, 11)$ in R^3 with standard inner product. Find an orthogonal basis for R^3

 $(2 \times 5 = 10 \text{ Weightage})$