FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2019 (CUCSS PG)
 CC19 MTH1 C05 - NUMBER THEORY

(Mathematics)
(2019 Admission Regular)
Time: Three Hours
Maximum: 30 Weightage

Part A

Answer all questions. Each question carries 1 weightage.

1. Define Euler Toitent function $\varphi(n)$ and show that if $a \mid b$ then $\varphi(a) \mid \varphi(b)$
2. Prove that $[x+n]=[x]+n$, where $x \in R, n \in N$
3. Derive Selberg identity.
4. Define Chebyshev's functions $\psi(x)$ and $\vartheta(x)$ and show that $\psi(x)=\sum_{m \leq \log _{2} x} \vartheta\left(x^{1 / m}\right)$
5. Calculate the highest power of 10 that divides 1000 !
6. Prove that the Jacobi symbol is a completely multiplicative function.
7. In the 27-letter alphabet (blank $=26$) use the affine enciphering transformation with key $a=13, b=9$ to encipher the message "HELP ME".
8. What is a trapdoor function?
$(8 \times 1=8$ Weightage $)$

Part B

Answer any two questions from each unit. Each question carries 2 weightage.

UNIT I

9. Show that if $n \geq 1$ then $\sum_{d / n} \varphi(d)=n$
10. Define Mangoldt function. Show that $n \geq 1$ then $\log n=\sum_{d / n} \Lambda(d)$
11. Prove that $\forall x \geq 1,\left|\sum_{n \leq x} \frac{\mu(n)}{n}\right| \leq 1$

UNIT II

12. State and prove Abel's identity.
13. For $x \geq 2$, prove that $\vartheta(x)=\pi(x) \log x-\int_{2}^{x} \frac{\pi(t)}{t} d t$ and $\pi(x)=\frac{\theta(x)}{\log x}+\int_{2}^{x} \frac{\theta(t)}{t \log ^{2} t} d t$
14. Prove that $\lim _{x \rightarrow \infty}\left(\frac{M(x)}{x}-\frac{H(x)}{x \log x}\right)=0$

UNIT III

15. If p is an odd prime, prove that $(2 \mid p)=(-1)^{\frac{\left(p^{2}-1\right)}{8}}$
16. Determine those odd primes for which 3 is a quadratic residue and those for which it is a non-residue.
17. Solve the following system:

$$
\begin{aligned}
x+3 y & \equiv 1(\bmod 26) \\
7 x+9 y & \equiv 1(\bmod 26)
\end{aligned}
$$

$(6 \times 2=12$ Weightage $)$

Part C

Answer any two questions. Each question carries 5 weightage.
18. (a) State and prove Euler's summation formula.
(b) If $x \geq 1$, prove that $\sum_{n \leq x} \frac{1}{n}=\operatorname{logx}+\mathrm{C}+\mathrm{O}\left(\frac{1}{x}\right)$ where C is the Euler's constant.
19. (a) State three equivalent forms of prime number theorem.
(b) Prove that that $\lim _{x \rightarrow \infty} \frac{\pi(x) \log x}{x}=1$ if and only if $\lim _{x \rightarrow \infty} \frac{\pi(x) \log \pi(x)}{x}=1$
20. State and prove Gauss' lemma.
21. (a) What is the difference between public key and private key cryptosystem.
(b) Working in 26-letter alphabet use the matrix $A=\left[\begin{array}{ll}2 & 3 \\ 7 & 8\end{array}\right]$ to encipher the message "NOANSWER".

