(Pages: 2)

Name	:		 	• •	 				•	• •	
Reg.	N	o	 						 	•	

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2019 (CUCSS PG)

CC19P MTH1 C03 – REAL ANALYSIS-I

(Mathematics)

(2019 Admission Regular)

Time: Three Hours

Maximum: 30 Weightage

PART A

Answer *all* questions. Each question carries 1 weightage.

- 1. Prove that the set of all rational numbers is countable.
- 2. Prove that union of an infinite collection of closed sets need not be closed.
- 3. If E is an infinite subset of a compact set K, then prove that E has a limit point in K
- 4. If f is a continuous mapping of the closed unit interval [0, 1] into itself, then prove that f(x) = x for at least one $x \in [0, 1]$
- 5. Show that L'Hospital's rule fails to hold for vector valued functions.
- 6. Let *f* be a bounded real function defined on [*a*, *b*] and let α be monotonically increasing function on [*a*, *b*]. Then prove that $\int_{-a}^{b} f \, d\alpha \leq \int_{a}^{-b} f \, d\alpha$
- 7. If $f \in \mathcal{R}(\alpha)$ on [a, b], then prove that $|f| \in \mathcal{R}(\alpha)$ and $|\int_a^b f \, d\alpha| \leq \int_a^b |f| \, d\alpha$
- 8. Let $f_n(x) = \frac{\sin nx}{\sqrt{n}}$ (x real, n = 1,2,3, ...), then prove that $\{f_n'\}$ does not converge to f'

(8 x 1 = 8 Weightage)

PART B

Answer any *two* questions from each unit. Each question carries 2 weightage.

UNIT I

- 9. Prove that a finite point set has no limit points.
- 10. Prove that a set *E* is open if and only if its complement is closed.
- 11. If f is a continuous mapping of a metric space X into a metric space Y, and if E is a connected subset of X, then prove that f(E) is connected.

UNIT II

12. State and prove chain rule of differentiation.

- 13. If f is continuous on [a, b], then prove that $f \in \mathcal{R}(\alpha)$ on [a, b]
- 14. State and prove the fundamental theorem of calculus.

19P103

UNIT III

- 15. State and prove the Cauchy criterion for uniform convergence of a sequence of functions defined on E
- 16. Prove that there exists a real continuous function on the real line which is nowhere differentiable.
- 17. Define equicontinuous family of functions. If K is a compact metric space, if $f_n \in C(K)$ for n = 1,2,3,..., and if $\{f_n\}$ converges uniformly on K, then prove that $\{f_n\}$ is equicontinuous on K

(6 x 2 = 12 Weightage)

PART C

Answer any two questions. Each question carries 5 weightage.

- 18. i) Prove that continuous mapping of a compact metric space X into a metric space Y is uniformly continuous.
 - ii) Give an example of a continuous function on (0, 1) which is not uniformly continuous.
- 19. i) If *f* is differentiable on [a , b], then prove that *f* ' cannot have simple discontinuities on [a, b]
 - ii) State and prove Taylor's theorem.
- 20. i) Prove that a continuously differentiable curve γ defined on an interval [a, b] is rectifiable and $\Lambda(\gamma) = \int_a^b |\gamma'(t)| dt$
 - ii) Is γ defined on $[0, 2\pi]$ by $\gamma(t) = e^{2it}$ rectifiable?
- 21. If f is a continuous complex function on [a, b], then prove that there exists a sequence of polynomials $P_n(x)$ such that $\lim_{n \to \infty} P_n(x) = f(x)$

(2 x 5 = 10 Weightage)
