Nam	e	***************************************	
			AM
Reg.	No		4/

FIRST SEMESTER B.C.A. DEGREE EXAMINATION, NOVEMBER 2014

(CUCBCSS-U.G.)

Complementary Course

BCA 1C 02—DISCRETE MATHEMATICS

ime: Three Hours

Maximum: 80 Marks

Part A

Answer all questions.

- 1. Which are the basic logical operators?
- 2. Define quantifier.
- 3. Define Boolean Algebra.
- 4. Give an example of a partially ordered set.
- 5. Find the degrees of all vertices of

- 6. Draw a regular bipartite graph.
- 7. Find the connectivity of C₄.
- 8. Find the centre of P₅.
- 9. Draw the dual graph of K3.
- 10. Which are the two Kuratowski's graphs?

 $(10 \times 1 = 10 \text{ marks})$

Part B

Answer all questions.

- 11. Construct a truth table for $p \land \neg q$.
- 12. Find the glb and lub of {0, 1, 2, 3, ... 100}.
- 13. Draw a pair of isomorphic graphs.
- 14. State the max flow min cut theorem for networks.
- 15. Draw any digraph with 5 vertices and 10 edges.

 $(5 \times 2 = 10 \text{ marks})$

Turn over

Part C

Answer any five questions.

- 16. Define relation from a set A to a set B and describe various types of relations.
- 17. State De Morgan's laws for elements in Boolean Algebra.
- 18. Describe travelling salesman problem.
- 19. State Euler's formula for connected graphs. Verify it for K2, 3.
- 20. Define complete graph, chromatic graph, planar graph and directed graph.
- 21. Explain binary trees, rooted trees and spanning trees.
- 22. Prove that in a directed graph G, sum of the out degrees is same as sum of in degrees which is sa as the total number of arcs[edges] in G.
- 23. Define Eulerian digraph. Give an example.

 $(5 \times 4 = 20 \text{ max})$

Part D

Answer any five questions.

- 24. (a) Show that $(-(p \lor q)) \lor (-p \land q) = -p$.
 - (b) Let $S = \{1, 2, 3\}$. Define a relation $R = \{(1, 1), (1, 2), (2, 3), (3, 3)\}$. Is it an equivale relation?
- 25. Explain the logic gates in detail.
- 26. (a) Draw the union of P_3 and C_6 .
 - (b) Prove that in a graph G every walk contains a path.
- 27. (a) Explain Hamiltonian graph and Eulerian graph. Give an example for each.
 - (b) Check whether $K_{2,3}$, K_6 are non planar.
- 28. If G is a tree with n vertices then prove that the following statements are equivalent.
 - (a) G is a connected graph having n-1 edges.
 - (b) G is a cycle free graph with n-1 edges.
- 29. Explain any algorithm to find a spanning tree in a graph. Using this, find the spanning tree

31. Explain various type of connectivity in a digraph.

 $(5 \times 8 = 40 \text{ marks})$