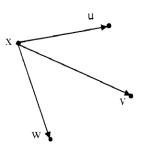
Name	:.							
Reg. No								

FIRST SEMESTER DEGREE EXTERNAL EXAMINATION DEC./JAN. 2015 -16

(2015 Admission)

CC15UBCA1C02 - DISCRETE MATHEMATICS (Complementary)


Time: 3 Hours Max. Marks: 80 Marks

PART A

Answer all questions

- 1. Write the truth table of $p \rightarrow q$.
- 2. Let $R = \{(a, b) : a < b \text{ where } a, b \in \mathbb{Z}\}$ be a relation on \mathbb{Z} , set of all integers. Check whether the relation is reflexive.
- 3. Let $A = \{0,1,2,\dots,100\}$ and let aRb if and only if a divides b. Find minimal element of A.
- 4. Find the dual of the statement (1 + a) * (b + 0) = b.
- 5. Give an example of a multigraph.
- 6. Give examples of 2-regular graph and 3-regular graph.
- 7. Draw a graph with edge connectivity 2.
- 8. Define directed graph. Give an example of a directed graph.
- 9. Define path and give an example of path.

10.

Find in degree and out degree of each vertex.

(10x1 = 10 marks)

PART B

Answer all questions

- 11. Show that $(p \rightarrow q) \leftrightarrow \neg p \lor q$ is a tautology.
- 12. Find negation of 1) $\forall x \exists y P(x,y)$ 2) $\forall x \forall y P(x,y)$
- 13. State max-flow min-cut theorem.

- 14. Let $R = \{(a, b) : a, b \in A, \text{ a divides b}\}$ be a relation, where $A = \{1, 2, \dots, 36\}$. Draw Hasse diagram for the order relation.
- 15. If r is the radius and d is the diameter of the connected graph G, prove that $r \le d \le 2r$.

(5x2 = 10 mar)

PART C

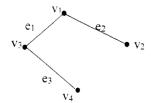
Answer any five questions

- 16. $K_{3,3}$ is not planar. Explain.
- 17. Define different types of connectivity in digraphs with examples.
- 18. Suppose a travelling salesman required to visit four cities *P*, *Q*, *R*, *S* during a trip. The dista between every pair of cities (in km) are given in the following table

	Q	R	S	
P	45	40	35	
Q		32	18	
R			44	

Find the minimum distance for covering all the cities.

- 19. Find all the spanning trees of K₄.
- 20. Define isomorphism between two graphs. Give an example of two graphs which isomorphic.
- 21. What is a subgraph? Draw a graph and three subgraphs of it.
- 22. Using an example find the minimum spanning tree using Kruskal's algorithm.
- 23. Define greatest lower bound and least upper bound with example.


(5x4 = 20 marks)

PART D

Answer any five questions

- 24. Define Hamiltonian graph. Explain all terms related to it. Draw a graph.
- 25. What is an equivalence relation? Give examples of an equivalence relation and nonequivalence relation.
- 26. What is Boolean algebra? What are the properties?
- 27. a) Draw the union of P_3 and C_6
 - b) Prove that in a graph G every walk contains a path.
- 28. Explain dual of a graph with example.

29.

Write the adjacency matrix and incidence matrix of the given graph.

15U115

- 30. What are the different types of logic gates and explain.
- 31. Determine the truth value of each of these statements if the domain consists of all integers
 - a) $\forall n \exists m (n^2 < m)$
 - b) $\exists n \forall m(n < m^2)$

 $(5x8 = 40 \, marks)$
