Name:	
Reg. No	

FIRST SEMESTER DEGREE EXTERNAL EXAMINATION DEC./JAN. 2015-16' (2015 Admission)

CC15UMAT1B01-FOUNDATIONS OF MATHEMATICS(core)

Time: Three Hours Maximum: 80 Marks

I. Answer all questions:

- 1. Find the domain of $f(x) = \sqrt{1+x}$
- 2. What is the power set of $\{\varphi\}$
- 3. If $\lfloor x \rfloor$ denote the integer floor function at x then $\lfloor -12.25 \rfloor = \dots$
- 4. Find -10(mod 3)
- 5. If $\sqrt{5-2x^2} \le f(x) \le \sqrt{5-x^2}$ for $-1 \le x \le 1$, find $\lim_{x \to 0} f(x)$.
- 6. Cardinal number of the infinite set P of positive integers is
- 7. The dual of the preposition (p \vee F) \wedge (q \vee T) is
- $\lim_{x\to 0} x \sin\frac{1}{x} = \dots$
- 9. Give an example of nested sequence of open intervals whose intersection is empty.
- 10. The Cartesian product of $A = \{1, 2\}$ and $B = \{a, b, c\}$ is
- 11. Define an algebraic number.
- 12. The points of discontinuity of the function $f(x) = \frac{x+2}{\cos x}$ are

 $(12 \times 1 = 12 \text{ Marks})$

II. Answer any nine questions.

- 13. Let $f: R \rightarrow R$ and $g: R \rightarrow R$ be defined by $f(x) = x^2$ and g(x) = x+3. Compute $f \circ g$ and $g \circ f$.
- 14. Show that the preposition $p \rightarrow q$ and $\neg p \lor q$ are logically equivalent.
- 15. Let $A = \{1, 2, 3, 4\}$ and $B = \{a, b, c, d\}$ and let $R = \{a, b, c, d\}$ $\{(1,a),(2,d),(3,a),(3,b),(3,d)\}$. Find the matrix of the relation.
- 16. Given that $f: A \to B$ and $g: B \to C$ are injective, Prove that the composite function $g \circ f$ is injective.
- 17. Find the centre and radius of the circle circle $x^2 + y^2 4x 4y + 4 = 0$
- 18. For what value of a, is $f(x) = \begin{cases} x^2 1 & x < 3 \\ 2ax & x \ge 3 \end{cases}$ continuous at every x.
- 19. Prove that f(x) = |x| is continuous at every value of x

24. Let $A = \{1,2,3,\ldots,14,15\}$ and R be a ternary relation on A defined by the equation $x^2 + 5y = z$. Write R as a set of ordered triples.

 $(9 \times 2 = 18 \text{ mark})$

III. Answer any six questions.

- 25. Prove that $\lim_{x \to 2} f(x) = 4$ if $f(x) = \begin{cases} x^2, & x \neq 2 \\ 1, & x = 2 \end{cases}$
- 26. Express the statement "Some students in this class has visited Mumbai" and "Every students in this class has visited either Chennai or Mumbai" using quatifiers.
- 27. Show that the product set P×P is countably infinite.(P is the set of positive integers).
- 28. Show that the prepositions $p \lor (q \land r)$ and $(p \lor q) \land (p \lor r)$ are logically equivalent.
- 29. Check whether x/y (x divides y) on the set P of positive integers is
 - (b)Symmetric (c)Transitive (a) Reflexive
- 30. Define h(2) in a way that extends h(t) = $\frac{t^2+3t-10}{t-2}$ to be continuous at t=2.
- 31. Find all the partitions of $S = \{a,b,c,d\}$.
- 32. Graph the parabola $y = x^2 2x 3$. Label the vertex, axis and intercepts, if any.
- 33. Graph the function let $f(x) = \begin{cases} x, & x < 1 \\ x + 1, & x > 1 \end{cases}$ Discuss the behaviour of the function as $x\rightarrow 1$.

 $(6 \times 5 = 30 \text{ Mark})$

IV.Answer any two questions.

- 34. Express the following statements into logical expression using quantifiers?
 - (a) "All humming birds are richly coloured"
 - (b) "No large birds live on honey"
 - (c) "Birds that do not live on honey are dull in colour"
 - (d) "humming birds are small"
- 35. (a)Define an equivalence relation on a non empty set ,equivalence class, and the quotient set.
 - (b) $A = \{1,2,3,\ldots,14,15\}$, the relation on $A \times A$ defined by $(a,b)\sim(c,d)$ iff ad=bc prove that '\sim ' is an equivalence relation. Find the equivalence class of (3,2).
- 36. (a)Do $\lim_{x \to 0} f(x)$ exist, if $f(x) = \frac{x}{|x|}$
 - (b) Evaluate $\lim_{\theta \to 3^+} \frac{[\theta]}{\theta}$ and $\lim_{\theta \to 3} \frac{[\theta]}{\theta}$ where $[\theta]$ is the integer floor function
 - (c) Evaluate $\lim_{x\to 0^+} \frac{x^2}{2} \frac{1}{x}$

 $(2 \times 10 = 20 \text{ Mai})$