Name	
Reg. No	*

FIRST SEMESTER DEGREE EXTERNAL EXAMINATION DECEMBER/ JANUARY 2015 - '16

(2015 Admission)

CC15UMAT1C01-MATHEMATICS (Complementary)

Time: 3 hrs Max Mark: 80

I Answer all questions

(12 x 1 = 12 Marks)

- 1. Find $\lim_{x \to 1} \frac{x-1}{\sqrt{x+3}-2}$
- 2. Find a point of discontinuity of the function $f(x) = \frac{x+2}{\cos x}$
- 3. Find $\lim_{x \to \infty} \frac{\sin 2x}{x}$
- 4. If $\lim_{x \to 4} \frac{f(x) 5}{x 2} = 1$, find $\lim_{x \to 4} f(x)$
- 5. Find the point of inflexion of the curve $y = (x-2)^3 + 1$
- 6. Evaluate $\sum_{k=1}^{7} (-3k)$
- 7. Find the Norm of the partition $\{-2, -1.6, -0.5, 0, 0.8, 1\}$ of the interval [-2, 1]
- 8. Find the vertical asymptote of the curve $y^2(2a x) = x^3$
- 9. Find the slope the curve $f(x) = x^2 + 1$ at (2,5)
- 10. If f is continuous and $\int_{1}^{2} f(x) dx = -4$ and $\int_{1}^{5} f(x) dx = 6$, then $\int_{2}^{5} f(x) dx = \dots$
- 11. If f is integrable on [a, b], the average value $AV(f) = \dots$
- 12. Express $\lim_{\|P\|\to 0} \sum_{k=1}^{n} (3c_k^2 2c_k + 5) \Delta x_k$ where P denotes a partition of the [-1,3], as an integral.

II Answer any nine questions

(9x2 = 18 Marks)

- 13. Using $\varepsilon \delta$ definition prove that $\lim_{x \to 3} (3x 7) = 2$
- 14. Show that if $\lim_{x \to c} |f(x)| = 0$, then $\lim_{x \to c} f(x) = 0$
- 15. Evaluate $\lim_{x \to 0} \frac{\sqrt{2+x} \sqrt{2}}{x}$
- 16. Find the absolute extrema of $y = 4 x^2$ on [-3, 1]
- 17. Find the linearization of $f(x) = \sqrt{x^2 + 9}$ at x = -4
- 18. For what value of a, the following function is continuous at x = 3,

$$f(x) = \begin{cases} x^2 - 2; & x < 3 \\ 2ax; & x \ge 3 \end{cases}$$

- 19. Use the inequality $\cos x \ge 1 \frac{x^2}{2}$, to find a lower bound for the value of $\int_0^1 \cos x \, dx$
- 20. Find $\lim_{x \to 0} (1+x)^{1/x}$
- 21. Find the area of the region between the curve $y = 3x^2$ and the x axis on the interval [0, l]
- 22. Find the second derivative of the function $r = \frac{12}{\theta} \frac{4}{\theta^2} + \frac{1}{\theta^4}$ w.r.t θ
- 23. Find $\int_{-4}^{4} |x| \, dx$
- 24. Suppose that $\int_0^1 f(x)dx = 3$, then if f is odd, find $\int_{-1}^0 f(x)dx$

III Answer any six questions

(6x5 = 30 Mark)

- 25. Prove that the function y = |x| is differentiable on $(-\infty, 0)$ and $(0, \infty)$, but has no derivati at x = 0
- 26. In the alternate form of the Mean value theorem $f(a+h) = f(a) + hf^{I}(a+\theta h)$; $0 < \theta < 1$, If f(x) is a quadratic expression, prove that $\theta = 1/2$
- 27. The curves $y = x^2 + ax + b$ and $y = cx x^2$ have a common tangent line at the point (1, 0). Find a, b and c
- 28. Show that the function $f(x) = \begin{cases} 1 & \text{when } x \text{ is rational} \\ 0 & \text{when } x \text{ is irrational} \end{cases}$ is not Riemann integrable over [6]
- 29. Find all the asymptotes of the curve $y = \frac{x^2 4}{x 1}$
- 30. Verify Rolle's theorem for the function $f(x) = x^3 3x^2 + 2x$
- 31. Prove that the function $y = \tan \theta$ increases on every interval in its domain
- 32. Show that the value of $\int_0^1 \sqrt{1 + \cos x} \ dx$ cannot possibly be 2
- 33. Estimate the sum of the square roots of the first n positive integers

IV Answer any two questions

(2x10 = 20Mark)

34. Prove that the function $f(x) = \begin{cases} \frac{|x-a|}{x-a} & x \neq a \\ 1 & x = a \end{cases}$ is discontinuous $at \ x = a$. Is the

discontinuity removable? If so what should f(a) he? If not why not?