0	0	0	-	0
- b	٧,	6	7	•
u		v		-

(Pages: 2)

Name		•••••
Reg. No.	andW_VI	

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, MAY 2014

(U.G.-CCSS)

Core Course-Physics

PH 2B 03—PROPERTIES OF MATTER, WAVES AND ACOUSTICS

(2009 - 2012 admissions)

: Three Hours

Maximum: 30 Weightage

Section A

Objective Type Questions. (Answer all twelve questions):

- 1 $\frac{1}{2}$ × stress × strain = _____.

 2 A beam fixed at one end and loaded at the
- 2 A beam fixed at one end and loaded at the other end is _____
- 3 Amplitude of SHM is the ———— displacement from the mean position.
- 4 When K.E. of an SHM is minimum P.E. is
- 5 The frictional force acting on a body opposite to its direction of motion is ______.
- 6 What is the condition for critically damped case?
- 7 High value of Q-factor means damping of oscillation system is _____
- 8 Superimposition of a wave and its reflected wave is called ———— wave.
- 9 In a transverse wave particles of the medium vibrate to the direction of propagation of wave motion.
- 10 Velocity of longitudinal wave in a gas depends upon elasticity and ———— of medium.
- 11 Piezoelectric crystal method is used for the production of ______.
- 12 The reflected sound wave is called —

 $(12 \times \frac{1}{4} = 3 \text{ weightage})$

Section B

Short Answer Type Questions (Answer all nine questions):

- 13 Write down the relation between modulae of elasticities.
- 14 Using figure show angle of twist and angle of shear.
- 15 State the law connecting stress and strain.
- 16 What is a forced harmonic oscillator?

Turn over

- 17 What is Q-factor?
- 18 Write down an equation of progressive wave motion.
- 19 Define a plane progressive harmonic wave.
- 20 Mention two applications of ultrasonic waves.
- 21 Mention three conditions for the acoustics of a building.

 $(9 \times 1 = 9 \text{ weight})$

Section C

Short Essay or Paragraph Questions. (Answer any five questions from seven)

- 22 A rubber of side 6 cm has one side fixed while a tangential force equal to the weigh 200 kg is applied at the opposite side so that a displacement of 1.2 cm takes place. Calcuthe values of stress, strain and shear modulus of elasticity.
- Find the work done in stretching a wire of cross section 1 mm² and length 3 m through 1 mm. Young's modulus of the material of the wire = 200 GPa.
- What is the wavelength of longitudinal waves of frequency 400 in an alloy whose der is 5500 kg/m³ and Young's modulus is 8.8×10^{10} N/m².
- 25 Explain the conditions for the applicability of Fourier's theorem.
- 26 If in air a plane wave of frequency 256 Hz and amplitude 1/1000 mm is produced. Calcuthe radiated energy per unit volume. (density of air = 1.29 kg/m³).
- 27 A pendulum is constructed from a string of length 10 m and a heavy mass 1 kg:
 - (a) Calculate the period of pendulum.
 - (b) What happens if its amplitude of oscillation is very large.
- 28 A body having a mass of 4 gm executes SHM. The force acting on the body w displacement is 8 cm is 24 gm. wt. Find the period. If maximum velocity is 500 cm/sec, the amplitude and maximum acceleration.

 $(5 \times 2 = 10 \text{ weight})$

Section D

Essay Questions. (Answer any two questions from three)

- 29 Derive the equation for work done per unit volume in : (a) Linear strain ; (b) Shear st
- 30 Solve the differential equation of a harmonic oscillator and find the expression for period velocity and displacement.
- 31 What is wave motion? Explain different types of wave motions with equations. Exfrequency, period, wavelength etc.

 $(2 \times 4 = 8 \text{ weigh})$