\qquad
\qquad

FIRST SEMESTER B.C.A. DEGREE EXAMINATION, NOVEMBER2017

(CUCBCSS-UG)
CC17U BCA1 C01- MATHEMATICAL FOUNDATIONS OF COMPUTER APPLICATIONS
(Mathematics -Complementary Course) (2017 - Admissions Regular)
Time: Three Hours
Maximum: 80 Marks
I. Answer all questions. Each question carries 1 mark.

1. The characteristic equation of a matrix A is given by \qquad
2. A matrix which is both symmetric as well as skew symmetric is known as \qquad matrix.
3. ()$=$ \qquad
4. If B is a matrix of order 2×3, then B has \qquad .elements.
5. In Gauss Jordan method the coefficient matrix is transformed in to \qquad matrix
6. If and are two vectors, then . is \qquad
7. $\left(\mathrm{A}^{-1}\right)^{-1}=$ \qquad
8. $\mathrm{dx}=$ \qquad
9. Two vectors and are \qquad if they have the same magnitude and direction
10. Find the ant derivative of $\operatorname{Cos} 2 x$.

$$
(10 \times 1=10 \text { Marks })
$$

II. Answer all questions. Each question carries 2 marks.
11. Integrate the function
12. Compute the magnitude of the vector $=++$.
13. Define scalar matrix. Give one example.
14. Differentiate $\mathrm{e}^{\mathrm{x}} \sin \mathrm{x}$ with respect to x .
15. If a matrix has 18 elements, what are the possible orders it can have?
(5 $\times 2=10$ Marks $)$
III. Answer any five questions. Each question carries 4 marks.
16. Find the sum of the vectors $=-2+$ and $=++\&=-6$.
17. Explain product rule with suitable example.
18. Evaluate the integral) dx.
19. Differentiate x^{x} with respect to x.
20. Explain dot product and cross product of two vectors. Give examples for each.
21. Find the derivative of $\tan x$ using the method of first principle.
22. Define characteristic equation and Eigen values of a matrix.
23. If $\times \mathrm{A}=$, then find the 2×2 matrix A .

$$
(5 \times 4=20 \text { Marks })
$$

IV. Answer any five questions. Each question carries 8 marks.
24. If $y=5 \cos x-3 \sin x$, Prove that $+y=0$.
25. Express the matrix $\mathrm{B}=$ as the sum of a symmetric and a skew symmetric matrix.
26. Differentiate Gauss elimination and Gauss Jordan methods.
27. Let $A=$.Verify $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.
28. Find the angle between the vectors $-2+$ and $3-2+$.
29. If $\mathrm{A}=, \mathrm{B}=\mathrm{C}=$

Verify that
a) $(\mathrm{A}+\mathrm{B}) \mathrm{C}=\mathrm{AC}+\mathrm{BC}$
b) $\mathrm{A}(\mathrm{BC})=(\mathrm{AB}) \mathrm{C}$
30. Evaluate $)^{2} \mathrm{dx}$.
31. Find the Eigen values of the matrix

$$
(5 \times 8=40 \text { Marks })
$$

