Name:
Reg. No
\qquad
\qquad

FIRST SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2017

(Regular/Supplementary/Improvement) (CUCBCSS-UG)

CC15UMAT1C01- MATHEMATICS

(Mathematics - Complementary Course)
(2015 Admission Onwards)
Time: Three Hours
I Answer all questions

1. State the quotient rule of differentiation.
2. Find the derivative of
3. $=$ \qquad
4. $=$ \qquad
5. A point of discontinuity of the function is \qquad
6. Define Critical points of a function.
7. State intermediate value property of derivatives.
8. Functions with same derivatives differ by a \qquad
9. Where does the function $y=\sec x$ have vertical asymptotes?
10. The interval on which the function decreases is \qquad
11. $=$ \qquad
12. $=$ \qquad

II Answer any nine questions
13. If, for, find
14. Check differentiability of the function.
15. Applying L' Hospital's rule find .
16. Find the linearization of at .
17. Find the critical points of
18. If , find $\delta>0$ such that

$$
0<\text { implies }<\varepsilon .
$$

19. Define corner and cusp with examples.
20. Find the value of c that satisfies the mean value theorem for the function on [0, 1].
21. Find the asymptotes of the graph of.
22. Show that if f is continuous, then
23. State the first form of fundamental theorem of calculus.
24. Evaluate
($9 \times 2=18$ Marks)
III Answer any six questions
25 . Find thecontinuous extension to of the function.
25. Show that is continuous at $\mathrm{x}=1$.
26. The volume of a fluid flowing through a small pipe in a unit of time at a fixed pressure is a constant time the fourth power of pipes' radius. How will a increase in affect ?
27. Discuss the behavior of near $x=0$.
28. Prove that
29. Find the first and second derivative of
30. Verify mean value theorem for the function $f(x)=\operatorname{In} x$ on the interval $[1, e]$
31. Define average value of an integrable function over a closed interval. Find the average value of 1 on $[0,1]$.
32. Evaluate 10 using Riemann definition
($6 \times 5=30$ Marks)
IV Answer any two questions
33. Graph the function.
34. Use the formal definitions to prove that
(i)
(ii) .
35. (i) Show that the line is its own tangent at any point.
(ii) Find the slope of the curve at Where does the slope equal?
($2 \times 10=20$ Marks)
