N	am	e			
---	----	---	--	--	--

Reg. No....

FOURTH SEMESTER B.Sc. DEGREE EXAMINATION, MAY 2014

(U.G.—CCSS)

Physics-Core Course

PH4 B07—ELECTRODYNAMICS—I

Time: Three Hours

Maximum: 30 Weightage

Section A

Answer all **twelve** questions. Each question carries ¼ weightage.

- 1. The magnitude of electric field E in the annular region of a charged cylindrical capacitor is:
 - (a) Same though out.
 - (b) Higher nearer the outer cylinder than the inner cylinder.
 - (c) Varies 1/r where r is distance from the centre.
 - (d) Varies $1/r^2$.
- 2. The energy density of a capacitor is given by:

(a)
$$\frac{1}{2} \varepsilon_0 E^2$$
.

(b)
$$\frac{1}{2} \epsilon_0 B^2$$
.

(c)
$$\frac{1}{2} \varepsilon_0 E$$
.

- (d) None of the above.
- 3. The displacement current arises due to:
 - (a) Positive charges only.
 - (b) Negative charges only.
 - (c) Both positive and negative charge.
 - (d) Time varying electric field.
- 4. Mathematical expression for Poisson's equation is
- 5. Tesla equals to:
 - (a) Nam.

(b) Nam-1.

(c) $NA^{-1}m^{-1}$.

(d) None of the above.

			2	ALOX.			
6.	Two par 2 A in th	rallel wires each of 50 cm. length a he same direction. The force betwe	re placen the	ced 1 m. apart. Each wire is carrying a current of two wires is:			
	(a)	Attractive.	(b)	Repulsive.			
	(c)	Sometime (a) and sometime (b).	(d)	None of the above.			
7.	Laplace	e's equations is given by ———.					
8.	The fer	romagnetic property can be explai	ned or	n the basis of formation of ———.			
9.	Circula	Circular loop A has radius R and current I and another B has twice the current and radius as the of A then the ratio of magnetic field at the centre of these loop is:					
	(a)	1. asome	(b)	2. the roughless			
	(ċ)	3.	(d)	4.			
10.		agnetic field at a point on the axis a current of 2 A flows though it is		ng solenoid of length 2m total number of turns 50			
	(a)	$3.24 \times 10^{-4} \text{ T}.$	(b)	$6.28 \times 10^{-4} \text{ T}.$			
	(c)	13.24 × 10 ⁻⁴ T.	(d)	$5.24 \times 10^{-4} \text{ T}.$			
11.	The m	agnetic field at the centre of the c	ube of	edge of length a is ———.			
12.	A magnet of moment M is rotated through 360° in a magnetic field B, the work done will be:						
	(a)	MB.	(b)	2MB.			
	(c)	MB/2.	(d)	None of the above.			
				$(12 \times \frac{1}{4} = 3 \text{ weightag})$			
			Section	The displacement corrent arises due to B m			
				e questions. ies 1 weightage.			
		Coulomb's law.					
. 14	. Obtai	Obtain an expression for the charge required to produce equilibrium in an electrified soap bubb					
15		State mean value and maximum value theorem					
16		Derive an expression for the energy of a charged condenser.					
17		Show that $\Delta \cdot A = 0$					
18							
19		Define magnetic vector potential.					
20		ne susceptibility. t is Lorentz force ?					
2	i. wiiai	t is Eulenta force :		$(9 \times 1 = 9 \text{ weight})$			

Section C

Answer any five questions. Each question carries 2 weighage.

- 22. Applying Gauss's law for deriving an expression for the electric intensity due to an infinite sheet of charge...
- $\ \, \mathbb{Z}$. The energy of a charged capacitor is 0.2 $\ J$. If its capacitance is 2 $\ \mu F$, calculate :
 - (i) The charge on the capacitor; and
 - (ii) The potential difference between the plates.
- 14. Define electrical images with a neat diagram.
- 5. State and explain second uniqueness theorem
- An atom consist of a point nucleus of charge q surrounded by a uniformly charged spherical cloud (-q) of radius a. Find the atomic polarizability of such an atom.
- 7. Explain the physical interpretation of bound charge.
- 3. Discuss about the comparison of magetostatics and electrostatics.

 $(5 \times 2 = 10 \text{ weightage})$

Section D

Answer any **two** questions. Each question carries 4 weightage.

- List and explain the basic properties of conductors and insulators. Discuss the properties of equipotential surfaces.
- Dobtain the Laplace's equation in one, two and three dimension. Explain its properties of the solution.
- State Biot Savart law. Derive an expression for the magnetic field due to a current carrying conductor at a point near it.

 $(2 \times 4 = 8 \text{ weightage})$